
UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Learnable Sparsity and Weak Supervision
for Data-Efficient, Transparent, and Compact

Neural Models

Gonçalo Migueis de Matos Afonso Correia

Supervisor : Doctor André Filipe Torres Martins
Co-Supervisor : Doctor Vlad Niculae

Thesis approved in public session to obtain the PhD Degree in
Electrical and Computer Engineering

Jury final classification: Pass with Distinction and Honour

2022

B

UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Learnable Sparsity and Weak Supervision
for Data-Efficient, Transparent, and Compact Neural Models

Gonçalo Migueis de Matos Afonso Correia

Supervisor : Doctor André Filipe Torres Martins
Co-Supervisor : Doctor Vlad Niculae

Thesis approved in public session to obtain the PhD Degree in
Electrical and Computer Engineering

Jury final classification: Pass with Distinction and Honour

Jury

Chairperson : Doctor Isabel Maria Martins Cardoso, Instituto Superior
Técnico, Universidade de Lisboa

Members of the Committee :
Doctor Mário Alexandre Teles de Figueiredo, Instituto Superior Técnico,
Universidade de Lisboa;
Doctor Ivan Titov, School of Informatics, University of Edinburgh, UK;
Doctor André Filipe Torres Martins, Instituto Superior Técnico, Univer-
sidade de Lisboa;
Doctor Wilker Ferreira Aziz, Institute for Logic, Language and Compu-
tation, University of Amsterdam, Netherlands

Funding Institutions - European Research Council and Instituto de
Telecomunicações

2022

Abstract

Neural network models have become ubiquitous in the machine learning literature. These

models are compositions of differentiable building blocks that compute dense representa-

tions of the underlying data. To obtain good representations, conventional neural models

require many training data points. Moreover, the representations obtained by neural mod-

els are largely uninterpretable, albeit capable of leading to high performance on many tasks.

Neural models are also often overparameterized and give out representations that do not

compactly represent the data. To address these issues, this thesis contributes with several so-

lutions leveraging sparsity and various forms of weak supervision. For data-efficiency, we

leverage transfer learning as a form of weak supervision. The proposed model can perform

similarly to models trained on millions of data points on a sequence-to-sequence generation

task, even though we only train it on a few thousand. For transparency, we propose a nor-

malization function that can learn its sparsity. The model learns how sparse it needs to be

at each layer, adapting the sparsity according to the neural component’s role in the overall

structure. At no cost in accuracy, sparsity helps to uncover different specializations of the

neural components, aiding the interpretability of a popular neural machine translation ar-

chitecture. Finally, for compactness, we develop a procedure to efficiently obtain determin-

istic gradients of discrete and structured latent variable models. The discrete nodes in these

models can compactly represent implicit clusters and structures in the data. Still, their train-

ing can often be complex and prone to failure since it usually requires approximations that

rely on sampling or relaxations. We propose to train these models with deterministic gradi-

ents by parameterizing discrete distributions with sparse functions, both unstructured and

structured. We obtain good performance on three latent variable model applications while

still achieving the practicality of the approximations mentioned above. Through these novel

contributions, we challenge the conventional wisdom that neural models cannot exhibit data

efficiency, transparency, or compactness.

Keywords: Machine learning, natural language processing, neural networks, sparsity, latent

variable models.

i

Resumo

Em aprendizagem automática, os modelos baseados em redes neuronais tornaram-se omni-

presentes no estado da arte. A composição destes modelos baseia-se em blocos diferenciáveis

que dão origem a representações vetoriais densas dos dados subjacentes. Para obter boas re-

presentações, os métodos convencionais requerem o manuseamento de muitos dados. Para

além disso, embora obtenham excelente desempenho, estes modelos não são interpretáveis e

não fornecem representações dos dados de forma compacta. Para resolver estes problemas,

esta tese propõe soluções que envolvem esparsidade e várias formas de supervisão fraca.

Para obter eficiência de dados, usamos técnicas de transferência de informação como uma

forma de supervisão fraca. O modelo proposto tem um desempenho semelhante a mode-

los treinados em milhões de dados, embora tenha sido treinado em apenas poucos milhares

de exemplos. Para obter transparência, propomos uma função de normalização que tem a

capacidade de aprender a sua própria esparsidade, ou seja, capaz de aprender a atribuir va-

lores nulos. Esta função é diferenciável e a esparsidade pode ser por isso adaptada de acordo

com os dados e de acordo com o papel que a componente neuronal do modelo em que

se insere. Sem custos no desempenho, a esparsidade ajuda a descobrir especializações das

componentes neuronais, ajudando a interpretabilidade de um modelo de tradução automá-

tica. Para obter compacidade, propomos uma maneira de obter gradientes determinísticos

de forma eficiente, no treino de modelos com variáveis latentes discretas ou estruturadas.

Estas componentes discretas têm a capacidade de desvendar grupos e estruturas inerentes

aos dados, compactando por isso a informação. No entanto, treinar estes modelos pode ser

complexo, pois exige aproximações através de amostragem ou relaxamentos para o espaço

contínuo. Com a técnica utilizada neste estudo, obtemos gradientes determinísticos ao pa-

rametrizar as distribuições com funções esparsas, tanto estruturadas como não-estruturadas.

Obtemos bom desempenho em três aplicações diferentes, alcançando, de qualquer forma,

as vantagens práticas das aproximações acima mencionadas. Graças a estas novas contribui-

ções científicas, a presente tese desafia a doutrina atual de que modelos neuronais não são

capazes de exibir eficiência de dados, transparência, nem compacidade.

Palavras-chave: Aprendizagem automática, processamento de linguagem natural, redes

neuronais, esparsidade, modelos com variáveis latentes.

iii

Acknowledgments

This thesis would not have been possible without the support of many. Family and

friends have supported me over the years to various degrees.

First of all, I dedicate this thesis to my mother, Maria da Conceição, and my father,

Júlio António. I profusely thank them for everything they have done in my education, both

academically and personally. I especially thank them for supporting me immediately after I

told them that I wanted to pursue a Master’s degree in Artificial Intelligence in Edinburgh,

even though I had already started one in Biomedical Engineering. Through a domino effect,

this has culminated in this thesis, and I hope I’m making them proud. I also want to thank

my grandmother, Maria Helena, as she always cared for me as though I were her child. I’m

also grateful to the rest of my family for their support and encouragement.

This thesis would have been much harder to do, had I not had endless support from

Sofia. She has been a pillar in my life throughout these years, and I’m glad to have her as

my partner. Many ideas have blossomed from conversations with her over dinner or on

the long walks we usually take. Moreover, she has drawn some of the figures present in this

thesis (the reader can infer which ones by how much better they look).

I am forever grateful to my official advisors, André and Vlad. They have been stellar,

and I am fortunate to consider them not only advisors but also friends. I thank André for

believing in me in the first place and inviting me to start on this journey with him. I thank

Vlad for always looking out for me in numerous ways and inspiring me to be better.

I also thank the members of the jury for my thesis defense, Isabel Trancoso, Mário

Figueiredo, Ivan Titov, and Wilker Aziz for their helpful feedback and interesting discussion

during the defense. In particular, a special thanks belongs to Wilker for introducing me to

latent and variational modeling, topics I was and am highly interested in, and for being kind

and patient while explaining those concepts.

I am fortunate to have had the help and support of many friends. From school, I thank

João Miguel, Ricardo B., Martim, Sérgio, Álvaro, Inês, Alice, Leonor, Miguel, Filipe, Ri-

cardo F., Renato, and Luciano. I’ve known many of them since I was six years old, and I hope

to have you by my side for countless more years! From IST (2012-2016), I thank Catarina,

Patrícia, Mariana, Maria, Miguel, Joana, Diogo, Gonçalo, André Melo, Daiane, and João.

They are incredible friends and an endless source of laughs, inspiration, and kindness. From

v

Edinburgh, I thank Alasdair, Antonio, Lasse, Diogo, and Miguel. We all shared great discus-

sions and experiences over there, learned from among the best, and despite some physical

distance right now, I still feel like we are close. I also thank my sis-law Inês, for being the

little sister I never had, and my bro-law Francisco, who would undoubtedly find it extremely

funny to be mentioned in a doctoral dissertation. A special thanks belongs to João Miguel,

André Melo, and João Graça. When I was most confused and lost in my academic journey,

they were the ones who persuaded me (thankfully!) to change paths and pursue a career in

machine learning. This thesis exists, in a way, because of conversations with them.

Finally, I’m grateful for my colleagues at the SARDINE and Probabll labs, who I’m glad

to call friends. I thank Ben, Erick, Tsveti, Marcos, Pedro, Chryssa, Taya, Nuno, Patrick,

António, Bryan, and Lina. This endeavor would have been so dull had not all of them been

around, and countless discussions led to many ideas present in this thesis. Additionally, even

though we have never met in person, I thank Mathieu Blondel, who had the idea to learn 𝛼

in 𝛼-entmax (Chapter 4), and had done initial work on top-k sparsemax (Chapter 5).

My PhD was funded by the European Research Council (ERC StG DeepSPIN 758969).

vi

Je n’ai fait celle-ci plus longue que parce que
je n’ai pas eu le loisir de la faire plus courte.

Blaise Pascal, 1657

If I had more time, I would have written a shorter letter.

(Translated into English in 1658 and poetically post-edited over time)

Contents

1 Introduction 1
1.1 Contributions and Thesis Statement . 5
1.2 Publications . 7
1.3 Roadmap . 7

2 Background 9
2.1 Machine Learning . 11

2.1.1 Linear and Deep Models . 14
2.2 Neural Networks and Natural Language 16

2.2.1 Sequence-to-Sequence Models . 17
2.2.2 Transformer . 18
2.2.3 Large Pre-trained Language Models 20

2.3 Sparsity and the Simplex . 21
2.3.1 Sparsemax . 22
2.3.2 Entmax . 24
2.3.3 SparseMAP . 26

2.4 Latent Variable Models . 29
2.4.1 Discrete Latent Variables . 30
2.4.2 Structured Latent Variables . 32

3 A Simple and Effective Approach to APE with Transfer Learning 33
3.1 Motivation . 35
3.2 Previous Work . 37
3.3 Automatic Post-Editing with BERT . 38

3.3.1 BERT as a Cross-Lingual Encoder 38
3.3.2 BERT as a Decoder . 40

3.4 Experiments . 41
3.5 Subsequent Work . 45
3.6 Final Remarks and Chapter Summary . 47

4 Adaptively Sparse Transformers 49
4.1 Motivation . 51
4.2 Previous Work . 53
4.3 Adaptively Sparse Transformers . 54
4.4 Experiments . 56
4.5 Analysis . 57

4.5.1 High-Level Statistics . 58
4.5.2 Identifying Head Specializations 65

4.6 Subsequent Work . 69

ix

4.7 Final Remarks and Chapter Summary . 71

5 Efficient Marginalization of Discrete and Structured Latent Variables 73
5.1 Motivation . 75
5.2 Previous Work . 76
5.3 Efficient Marginalization via Sparsity . 78
5.4 Structured Latent Variables . 79

5.4.1 Top-k Sparsemax . 79
5.4.2 SparseMAP . 80

5.5 Experimental Analysis . 80
5.5.1 Semi-Supervised Variational Auto-Encoder 81
5.5.2 Emergent Communication Game 86
5.5.3 Bit-Vector Variational Auto-Encoder 88

5.6 Subsequent Work . 95
5.7 Final Remarks and Chapter Summary . 96

6 Conclusions 99
6.1 Summary of Contributions . 101
6.2 Open Problems and Limitations . 102
6.3 Future Directions . 103
6.4 Broader Impact . 105

Bibliography 107

Appendix A Proof of Proposition 4.3 A-1

Appendix B Infrastructure B-1

x

List of Figures

2.1 The transformer architecture [figure taken from Vaswani et al., 2017]. . . . 18

3.1 Dual-Source BERT. 39

4.1 Comparison of Adaptively Sparse Transformers to related work. 52
4.2 Trajectories of 𝛼 values for a subset of the heads during training. 59
4.3 Distribution of learned 𝛼 values per attention block. 60
4.4 Distribution of attention densities for all attention heads. 61
4.5 Head density per layer for fixed and learned 𝛼. 63
4.6 Jensen-Shannon Divergence between heads at each layer. 64
4.7 Self-attention from the most confidently previous-position head in each model. 65
4.8 BPE-merging head (𝛼 = 1.91) discovered in the 𝛼-entmax model. 66
4.9 Interrogation-detecting heads in the three models. 67
4.10 Example of two sentences of similar length with different sparsity. 68

5.1 Learning curves on the test set for semi-supervised VAE on MNIST. 83
5.2 Median decoder calls per epoch. 89
5.3 Test results for Fashion-MNIST. 92
5.4 Bit vector VAE median and quartile decoder calls per epoch. 93
5.5 Performance on the validation set for the experiment in §5.5.3. 94

xi

List of Tables

3.1 Ablation study of decoder configurations. 42
3.2 Results on the WMT 2016–18 APE shared task datasets. 43

4.1 Test results on four machine translation datasets. 58

5.1 Test set results for semi-supervised VAE on MNIST. 84
5.2 Emergent communication success test results. 88
5.3 Test results for Fashion-MNIST. 91

B.1 Computing infrastructure. B-3

xiii

Notation

a, a, A, and A a scalar, a vector, a matrix, and a set, respectively;
vi the ith element of vector v;
wi j the element on the ith row and jth column ofW ;
ei the indicator vector for which every entry is zero, except the i th,

which is 1;
△K−1 the canonical simplex, i.e., 𝝃 ∈ ℝK :

∑
i 𝜉i = 1, 𝝃 ≥ 0};

Y a random variable;
pY (y; 𝜃) the probability mass function (pmf) that specifies the probability

distribution of the discrete random variableY , evaluated at the out-
come y using parameters 𝜃 ;

p(y |x) the probability value of outcome y given outcome x;
Cat(f (·; 𝜃)) the categorical distribution parameterized by the function f (·; 𝜃)

Cat(y; f (x; 𝜃)) the probability mass value of outcome y under the categorical dis-
tribution parameterized by the function f (x; 𝜃)

ℍ(p) the Shannon entropy of the pmf p(z), i.e., −∑
i pi log pi ;

KL [p | |q] the Kullback-Leibler divergence of p(z) from q(z);
∥z∥0 B |{t : zt ≠ 0}| the number of non-zeros of a sequence z, also known as the Ham-

ming weight;
𝔼p(z) [f (z)] the expectation of a function f : Z→ ℝ under the pmf p(z).

xv

xvi

1
Introduction

Contents
1.1 Contributions and Thesis Statement 5
1.2 Publications . 7
1.3 Roadmap . 7

1

1. Introduction

2

Deep learning is a field of machine learning that uses neural networks to learn and obtain

predictions and inferences from unseen data. The success of well-known deep learning

models [Simonyan and Zisserman, 2015, Devlin et al., 2019, Brown et al., 2020, inter

alia] relies on a rich parameterization accomplished through the use of numerous layers

of computation. Along with vast amounts of data points, such a heavy parameteriza-

tion allows these models to learn good vector representations that permit them to excel

in their respective tasks. However, these models are often highly overparameterized;

additionally, their interpretation is difficult due to the underlying opaqueness of neural

models. Moreover, they require costly computing power, which causes environmental

concerns [Strubell et al., 2019].

In natural language processing (NLP), one such model is the transformer architec-

ture [Vaswani et al., 2017], which has quickly risen to prominence thanks to its outstand-

ing performance, leading to improvements in the state of the art of neural machine trans-

lation [NMT; Junczys-Dowmunt et al., 2018a, Ott et al., 2018], and served as an inspira-

tion to even bigger and more powerful general-purpose models like BERT [Devlin et al.,

2019] and GPT-3 [Brown et al., 2020].

On the other hand, neural latent variable models are powerful and expressive tools

for finding patterns in high-dimensional data, such as images or text [Kim et al., 2018,

Kingma and Welling, 2014, Rezende et al., 2014]. These models have powerful struc-

tural biases that guide the model’s training; of particular interest are discrete latent vari-

ables, which can recover discrete encodings of hidden aspects of the data, leading to

compact representations [Kingma et al., 2014] and, in some cases, superior explanatory

power [Titov and McDonald, 2008, Bastings et al., 2019]. However, more often than

not, training models with discrete latent nodes is a difficult task due to the need to rely

on high-variance methods [e.g., REINFORCE; Williams, 1992] or relaxations into the

continuous space [e.g., Gumbel-Softmax; Jang et al., 2017, Maddison et al., 2017].

In this thesis, we will address the issues mentioned above of overuse of data points,

opaqueness, and the difficulties in training compact versions of neural models. To obtain

3

1. Introduction

the solutions presented, we will rely on forms of weak supervision and, most importantly,

on sparse projections onto probability spaces.

When this project began in 2018, the use of large pre-trained language models was

very much in an infant state. The pre-trained model ELMo [Peters et al., 2018] had just

been released, closely followed by BERT [Devlin et al., 2019], and practitioners were just

starting to use these models in their research to improve the state-of-the-art of tasks in

NLP. The transformer arquitecture [Vaswani et al., 2017] was also a promising model

that had just started to pick up much steam and to replace the recurrent neural network

(RNN) sequence-to-sequence models that were prominent in the NLP literature at the

time [Bahdanau et al., 2015]. During the course of this project, there has been remark-

able progress in neural networks and NLP research; for example, pre-trained language

model literature has evolved from proposing simply encoders that provide rich contextual

representations [e.g., ELMo and BERT; Peters et al., 2018, Devlin et al., 2019], to also

provide decoders that deliver extremely realistic text [e.g., GPT-3; Brown et al., 2020],

and encoder-decoder models that allow for any task to be posed as a natural language

prompt [e.g., T5 and BART; Raffel et al., 2020, Lewis et al., 2020].

The approaches found in the present thesis are, in part, a product of the aforemen-

tioned research efforts. As we will see in the following chapters, we introduced a way to

use large pre-trained encoders in generation tasks before large pre-trained decoder and

encoder-decoder models were developed; we tackled the opaqueness of the, at the time,

recently proposed and barely understood transformer architecture; and pioneered a new

paradigm in discrete latent variable model training.

We also note that this thesis has strong roots in a line of literature that has been

proposing new methods to induce sparsity within the computational graphs of neural

networks. Before this thesis, the foundations had been laid by the study of sparse nor-

malization functions [Martins and Astudillo, 2016, Niculae and Blondel, 2017, Peters

et al., 2019] and their applications [Maruf et al., 2019, Malaviya et al., 2018], and also

their counterparts and uses in structured prediction [Niculae et al., 2018a,b]. During this

4

1.1 Contributions and Thesis Statement

project, we have extended this line of work by tackling some of the abovementioned issues

with our sparsity-induced solutions. We have also created new foundations for others to

extend upon our work and create their own sparse approaches to new and challenging

problems [Treviso et al., 2022, Farinhas et al., 2022].

1.1 Contributions and Thesis Statement

We will now summarize the contributions of this thesis, which will address the open

questions left to answer in the previous section.

• We use weak supervision by leveraging transfer learning for data-efficient

sequence-to-sequence models. We show how to leverage a pre-trained encoder

to perform a sequence-to-sequence task on a tiny dataset. We explore different

avenues of parameter sharing and initialization to make this possible.

• We propose a new deep model with attention mechanisms that can dynamically

adapt to be denser or sparser as needed. We change the transformer architec-

ture such that each attention head, the main building block of transformers, can

dynamically change its sparsity during training. This way, each attention head can

accommodate its sparsity to its role in the overall model. To achieve that, we derive

the gradient of 𝛼 in 𝛼-entmax [Peters et al., 2019], a function akin to softmax, in

which the sparsity of the probability vector is controlled by a parameter 𝛼.

• We conduct an extensive analysis on the increased transparency of transformer

models that use 𝜶-entmax as its normalization function in the attention mecha-

nism. Besides studying the distribution of sparsity and respective 𝛼 values through-

out all attention heads in the transformer, we also identify examples of sharper

attention head behavior than what was found in previous work, along with the dis-

entanglement of newfound behaviors, thanks to our proposed sparsity.

• We propose a novel training method for discrete latent variable models that

5

1. Introduction

uses sparsity to compute an exact gradient. Thanks to this method, we can train

discrete latent variable models through marginalization of the latent variable effi-

ciently thanks to parameterizing the probability mass function with a sparse map-

ping: the sparsemax [Martins and Astudillo, 2016]. We test this method on a

semi-supervised latent variable model and an emergent communication task. In

both cases, our approach surpasses the performance of standard practices involving

Monte Carlo estimation or continuous relaxations.

• We propose two novel approaches to train structured latent variable mod-

els. Similarly to the method for unstructured discrete latent variable models, we

marginalize the structured space by using sparse mappings: SparseMAP [Niculae

et al., 2018a] and the novel top-k sparsemax. In the latter, the gradient can be exact

in certain conditions; in the former, the support is small from the start, making it a

very competitive approach against sampling methods. We test our strategies on a

bit-vector variational auto-encoder and find that they are competitive with standard

approaches to training these models.

• We provide open-source code for each of the methods we have proposed. The

respective repositories can be found in each of the chapters.

Thesis Statement. The primary claim of this thesis is that neural models do have the ca-

pability of being data-efficient, transparent, and compact: one only needs to look through

a different lens that is capable of leveraging weak supervision, sparsity, and latent repre-

sentations. We find that a vanilla application of neural models to the problem at hand

is not sufficient for achieving these properties: for data-efficiency, we find that we need

to allow parameter sharing, careful initialization, and powerful transfer learning capa-

bilities to succeed at a low-resource generation task; for transparency, we can allow the

model to leverage sparsity and let it learn it according to its needs at training time; and

for compactness, we can use discrete latent variable models in a better way than what was

previously possible by using a deterministic but efficient gradient.

6

1.2 Publications

1.2 Publications

This thesis is based, in part, on the following publications:

• A Simple and Effective Approach to Automatic Post-Editing with Transfer

Learning [Correia and Martins, 2019]. Described in Chapter 3, this paper was

accepted as a poster at ACL 2019.

• Unbabel’s Submission to the WMT2019 APE Shared Task: BERT-based

Encoder-Decoder for Automatic Post-Editing [Lopes et al., 2019]. Not included

as a specific chapter within this thesis, this work describes an Automatic Post-

Editing model that we submitted to the APE Shared Task at WMT2019. This

model won the Shared Task, obtaining state-of-the-art in APE at the time.

• Adaptively Sparse Transformers [Correia et al., 2019]. Described in Chapter 4,

this paper was accepted for an oral presentation at EMNLP 2019.

• Efficient Marginalization of Discrete and Structured Latent Variables via Spar-

sity [Correia et al., 2020]. Described in Chapter 5, this work was accepted as a

spotlight paper at NeurIPS 2020.

1.3 Roadmap

Herein, we show the outline of the remainder of this thesis.

We begin in Chapter 2 by reviewing major concepts that are essential to understand

the content of this thesis, particularly key concepts in machine learning, neural network

models for NLP, sparse mappings into probability spaces, and latent variable models.

In Chapter 3, we develop a sequence-to-sequence model for Automatic Post-Editing

using the transformer architecture and by harnessing the transfer learning power of a

pre-trained large language model.

In Chapter 4, we modify the transformer architecture to use attention modules that

7

1. Introduction

allow sparse coefficients that can adaptively change their sparsity depending on their role

within the model.

In Chapter 5, we propose a new training method for structured and unstructured

neural latent variable models, which uses sparsity to compute the training objective of

these models, instead of using Monte Carlo methods or continuous relaxations.

Finally, in Chapter 6, we summarize the contributions of the present thesis, address

some of the limitations and open problems of the present work, discuss exciting future

directions of further research, and the broader impact of this thesis.

8

2
Background

Contents
2.1 Machine Learning . 11
2.2 Neural Networks and Natural Language 16
2.3 Sparsity and the Simplex . 21
2.4 Latent Variable Models . 29

9

2. Background

10

2.1 Machine Learning

This chapter will discuss the foundations of our work and remind the reader of crucial

concepts needed to understand this thesis. Foremost, we will present key machine learn-

ing concepts. Then, we will discuss neural networks in the context of NLP, particularly

sequence modeling. Secondly, we will lay the foundations for using unstructured and

structured sparse projections into the simplex. Finally, we will discuss critical concepts

regarding latent variable models, particularly with discrete (unstructured and structured)

latent assignments.

2.1 Machine Learning

We begin by presenting the main ingredients in the common machine learning pipeline:

• a dataset D, made out of inputs D = {xn}Nn=1 or input-output pairs D = {(xn , yn)}Nn=1;

• a set of parameters 𝜃 , which are the parameters of the model; and

• a loss function L.

With these ingredients, we create a machine learning pipeline by taking a training set that

is a subset of D and estimate the parameters 𝜃 by minimizing the loss L on that set. The

resulting model with optimal 𝜃 can then be evaluated on a held-out subset of D, called

test set, to assess its performance. We will often assume D is made out of input-output

pairs, i.e. we’ll be addressing supervised learning, unless specified otherwise.

When the model is probabilistic, this process creates a probability model that identi-

fies the probability measure of a random experiment: it maps from available inputs in the

set of possible inputs X to a probability distribution of a random variable Y . When the

set of possible outputs Y is discrete, the probability distribution of Y is prescribed by a

probability mass function (pmf) pY |X (y |x; 𝜃); when the set of possible outputs Y is con-

tinuous, the probability distribution of Y is prescribed by a probability density function

(pdf). In the context of the present thesis, we will not have applications in which Y ∈ ℝ

(i.e., regression problems) and as such, when referring to pY |X (y |x; 𝜃), we assume that it is

11

2. Background

a probability mass function. Furthermore, our problems will most often involve a k-way

classification, and so pY |X (y |x; 𝜃) will be specifying a Categorical distribution,

Y |X=x ∼ Cat(f (x; 𝜃)) ,

where f (x; 𝜃) ∈ △K−1 is a function such that pY |X (y |x; 𝜃) = Cat(y | f (x; 𝜃)).

Supervised learning. We now turn our attention to applications in which one uses a

dataset of input-output pairs. In such a case, to estimate 𝜃 , we minimize the loss over the

input-pair dataset,

𝜃 = argmin
𝜃

LD(𝜃) ,

where LD(𝜃) is the loss function: the negative log-likelihood

LD(𝜃) = −LD(𝜃) = −
∑︁
n

log pY |X (yn |xn; 𝜃). (2.1)

A model with the loss function of Equation 2.1 is called a discriminative model, while one

that models instead pXY (x , y; 𝜃) is called a generative model. Typically, the loss function

might also entail a regularization term (e.g., the ℓ2 norm), which is added to the negative

log-likelihood

LD(𝜃) = −LD(𝜃) +R(𝜃).

Sometimes, instead of the probabilistically-grounded negative log-likelihood, practition-

ers might use a non-probabilistic loss ℓ and still use a statistical model; for example, one

might use the 0/1 loss where the loss is 1 if the argmax mode is wrong (i.e., ŷ ≠ y) and 0

otherwise. After training the model, we wish to make predictions ŷ for each novel input

x of the test set, and we can make such predictions by using the trained parameters 𝜃 and

selecting, for instance, the highest-scoring y ∈ Y:

ŷ = argmax
y∈Y

pY |X
(
y |x; 𝜃

)
.

12

2.1 Machine Learning

For example, in a binary sentiment classification problem of English sentences, Y =

{negative, positive}, and Xwould be the set of possible sentences in the English language.

Unsupervised learning. Similarly, there are also applications in machine learning

where we use just a dataset of inputs D = {x}Nn=1 and estimate the parameters 𝜃 un-

der a loss to obtain an unsupervised model; that is, a model in which inferences are made

without access to any labels (i.e., outputs). In this case, the loss function L only depends

on the inputs xn and the parameters 𝜃 and we thus model pX (x |𝜃). In this case, the loss

function is

LD (𝜃) = −
∑︁
n

log pX (xn |𝜃) .

In this setting, to assess the resulting model’s performance, we often compute the log-

likelihood of the model under the test set

LDtest (𝜃) =
∑︁
n

log pX
(
xn |𝜃

)
,

that is, we assess the likelihood of the model being able to generate the data points x.

Semi-supervised and weakly-supervised learning. In a semi-supervised setting, there

is typically a smaller portion of the dataset that is labeled, DL = {(xn , yn)}NLn=1, and the

remaining majority is unlabeled, DU = {(xn)}NUn=1. The parameters are then estimated by

using a combination of losses: a component that is supervised and another that is unsu-

pervised. Taking the loss examples given above, a probabilistic semi-supervised model

could have the loss function

LD (𝜃) = −
∑︁
x∈DU

log pX (x |𝜃) −
∑︁

(x ,y)∈DL

log pXY (x , y; 𝜃) . (2.2)

In some applications, both models may be independent components that share some pa-

rameters; in others, they are components of the same joint distribution over X× Y. In

the context of this thesis, we will use the term weakly-supervised and weak supervision to

13

2. Background

refer to a broader setting that aims to alleviate the need for labeled data to obtain a well-

performing model. This setting not only includes semi-supervision but also includes, for

example, the transferring of learned parameters of an already optimized model to a new

one, also called transfer learning. In such a case, the estimation of parameters can first

occur by minimizing the first loss component in Equation 2.2, and then those learned

parameters can be reused as an initialization on the minimization of the second compo-

nent. While not explored in this thesis, other forms of weak supervision include the usage

of underspecified or unreliable labels, linguistic constraints, labels obtained via heuristics,

among others.

2.1.1 Linear and Deep Models

Naturally, there are many different ways one can use 𝜃 to parameterize pY |X (y |x; 𝜃). One

of the simpler ways is to define a log-linear model,

pY |X (y |x; 𝜃) = Cat(y | f (x; 𝜃))

f (x; 𝜃) = softmax (s)

s =WT
𝜃 𝝓 (x) , (2.3)

where 𝝓 is a function that maps x into a manageable space,W𝜃 is a matrix of learnable

weights, and softmax is a function that maps a vector of scores s ∈ ℝK into a “vector of

probabilities”, that is,
∑K
k=1 [softmax(s)]k = 1 and [softmax(s)]k ≥ 0.

Definition 1: softmax

The mapping function softmax is defined as

[softmax(s)] j =
exp(s j)∑
j′ exp(s j′)

. (2.4)

In these linear models, the problem of obtaining the optimalW 𝜃 lies within the set

14

2.1 Machine Learning

of problems that convex optimization can solve, which significantly simplifies the opti-

mization process. While the optimization simplicity of linear models is appealing, con-

structing a suitable 𝝓 may require significant effort. The creation of an effective feature

function 𝝓 : X→ ℝd might demand extensive knowledge of the domain of X and of the

task itself. The art of creating these functions 𝝓 is often called feature engineering.

An alternative to the log-linear model is a neural network, which, in a way, per-

forms feature learning automatically through the use of hidden representations. Neural

networks use non-linear functions, also known as activation functions, along with linear

functions similar to Equation 2.3 in order to build these hidden representations.

Definition 2: neural network

A neural network with parameters 𝜃 is a function composed of building blocks that

comprise both linear and non-linear functions. These building blocks are called

layers. The layers connect in a sequence, and the output of each layer is fed into the

next layer. The output of the last layer is the output of the neural network

f (x; 𝜃) = 𝜋

(
WT

𝜃 𝝓𝜃 (x)
)

,

where compositions of differentiable functions with learnable 𝜃 parameterize 𝝓𝜃 and

𝜋 is a function that projects the scores into vectors of probabilities (e.g., softmax).

The composition of 𝝓𝜃 is extremely flexible and can be defined in a variety of ways,

making it a powerful way to obtain meaningful representations of the input space.

Thanks to its non-linearities, neural networks effectively create intermediate abstractions

of the data, which are optimized to represent the data more effectively in order to succeed

at the task, bypassing the need for feature engineering.

Just as well, non-linearities and the flexible composition of functions end up imped-

ing the usage of convex optimization, and so neural networks are often trained instead

through a gradient-based optimization algorithm based on a process called backpropaga-

15

2. Background

tion.

Definition 3: backpropagation

Backpropagation is a gradient-based process that locally minimizes the loss function

L by iteratively updating the parameters 𝜃 . In order to be able to update 𝜃 , the

only requirement is to be able to compute the gradient of L with respect to every

coordinate 𝜃d ∈ 𝜃 :
𝜕LD(𝜃)
𝜕𝜃d

. (2.5)

Due to the simplicity of this requirement, practitioners can build neural networks in a

modular way, where differentiable building blocks of functions are combined in arbitrary

computational graphs. A handful of different algorithms can be used to update 𝜃 during

backpropagation; for example, Adam [Kingma and Ba, 2015].

In practice, computing Equation 2.5 for the whole dataset D is a costly operation,

and so the gradient is usually computed through an unbiased estimate: independent and

identically distributed samples of the dataset are drawn at each iteration, and Equation 2.5

is computed on that set of samples (i.e., the mini-batch). The size of the step at which 𝜃 is

updated is determined by a value usually called the learning rate, which is a hyperparam-

eter of the model that is chosen to maximize a given metric on a held-out dataset (the

validation set or development set).

2.2 Neural Networks and Natural Language

Using neural networks in NLP applications is a pivotal part of the research presented in

this thesis. While there are many ways of applying neural networks to NLP, exploiting

many different architectures and aimed at many different tasks, we give special attention

to sequence-to-sequence models, which we will explain in the sequel.

Nevertheless, in the context of neural networks for NLP, there is a clear focus on ob-

16

2.2 Neural Networks and Natural Language

taining vectorized representations of words, of words within their context, and of whole

sentences. A common ingredient in all neural network architectures of NLP is the use

of embeddings. After the sentence is segmented into tokens (words, segments of words,

and punctuation), the first component of the neural network is an embedding table: a set of

learnable vectors of parameters that represent each token in the vocabularyV (chosen be-

forehand). For each token in the sentence, the corresponding vector (embedding) is taken

from the table, and the resulting output is the sequential concatenation of embeddings.

Many different architectures can extend the computational graph afterward, which will

change those representations and entangle them to contextualize the representation of

each word in the context of the sentence and the task at hand.

2.2.1 Sequence-to-Sequence Models

In NLP, predicting the next word in a sentence is a common task, for example in problems

such as machine translation (MT). The broader family of models that handle such tasks

are sequential models. In this thesis, we mainly focus on sequence-to-sequence models.

Definition 4: sequence-to-sequence models

A sequence-to-sequence model (seq2seq) is a model that takes as input a sequence

of tokens and produces as output another sequence of tokens. The model has

Yi |Y≤i , X ∼ Cat(f (y≤i , x; 𝜃)) as its underlying distribution. In turn, the pmf

p(yi |y≤i , x) = Cat(yi | f (y≤i , x; 𝜃))

specifies that probability distribution, where x = [x1 , . . . , xN] is the input sequence

of words, yi is the next word in the output sequence y = [y1 , . . . , yM], and y≤i is the

history of previous words in y. When modeled with neural networks, these typically

have two main building blocks: the encoder, which processes x, and the decoder, that

parameterizes the probability of the next token yi in the context of y≤i and x.

17

2. Background

Figure 2.1: The transformer architecture [figure taken from Vaswani et al., 2017].

In the following section, we will expand on the architecture used in the sequence-to-

sequence models presented in this thesis: the transformer.

2.2.2 Transformer

The transformer [Vaswani et al., 2017] is an architecture which maps an input sequence to

an output sequence through many layers of multi-head attention mechanisms, yielding a

dynamic, context-dependent strategy for propagating information within and across sen-

tences. It contrasts with previous seq2seq models for neural machine translation (NMT),

which usually rely either on gated recurrent operations [often LSTMs: Bahdanau et al.,

2015, Luong et al., 2015] or static convolutions [Gehring et al., 2017]. A diagram of this

18

2.2 Neural Networks and Natural Language

architecture is shown in Figure 2.1.

Attention mechanisms compute, for each query, a weighted representation of the

items. The particular attention mechanism used in Vaswani et al. [2017] is called scaled

dot-product attention.

Definition 5: attention mechanisms and scaled dot-product attention

Attention mechanisms are a differentiable building block of a neural network. For

each item in the sequence, the attention mechanism computes a weighted represen-

tation of all the other items in said sequence or a given context sequence. Given the

current item, it can often be interpreted as showing each item’s importance in the

context. A scaled dot-product attention mechanism is a particular type of attention

mechanism:

Att(Q , K ,V) = 𝝅

(
QK⊤
√
d

)
V , (2.6)

where, given n query contexts and m sequence items under consideration,Q ∈ ℝn×d

contains representations of the queries, K ,V ∈ ℝm×d are the keys and values of

the items attended over, and d is the dimensionality of these representations. The

𝝅 mapping normalizes row-wise using a mapping function like softmax, that is,

𝝅 (Z)i j = softmax(zi) j. In words, the keys compute a relevance score between each

item and query. Then, 𝝅 normalizes these attention weights, and these will weight

the values of each item at each query context.

However, for complex tasks, different parts of a sequence may be relevant in differ-

ent ways, motivating multi-head attention in transformers. Multi-head attention is simply

the application of Equation 2.6 in parallel H times, each with a different learned linear

transformation that allows specialization,

Headi (Q,K,V)=Att(QWQ
i , KW

K
i ,VW

V
i). (2.7)

19

2. Background

In the transformer, there are three separate multi-head attention mechanisms for

distinct purposes:

• Encoder self-attention: builds rich, layered representations of each input word by

attending to the entire input sentence;

• Context attention: selects a representative weighted average of the encodings of

the input words at each time step of the decoder;

• Decoder self-attention: attends over the partial output sentence fragment pro-

duced so far.

Together, these mechanisms enable the contextualized flow of information between the

input sentence and the sequential decoder.

2.2.3 Large Pre-trained Language Models

A recently attractive way to obtain high-performing models in NLP is to use a pre-trained

language model. These are models with many parameters, trained on millions of sen-

tences gathered from the web, using many computational resources in the training pro-

cess. Many such models are publicly released and are available for the research and in-

dustry community to use. Typically, practitioners download an already optimized model

from the web and train it further by finetuning it, that is, taking an already trained model’s

parameters and optimizing them on a new dataset, usually using a lower learning rate,

such that the new optimum does not veer too far from the original optimum.

Many different models have been released in the last few years, such as ELMo [Peters

et al., 2018], OpenAI GPT series [Radford et al., 2018, Brown et al., 2020], BERT [De-

vlin et al., 2019], and T5 [Raffel et al., 2020]. Of particular interest in this thesis is BERT

since it is the model used in Chapter 3.

BERT, at its core, is a transformer model, as described in §2.2.2. However, it is

only made out of the encoder building block and thus does not have language modeling

20

2.3 Sparsity and the Simplex

capabilities in its vanilla form. As is the case with other similar models, BERT was trained

on an enormous corpus of sentences in monolingual English and in multilingual datasets

of 100+ languages. BERT’s masked language modeling objective (MLM) has proven to

be a powerful mechanism to learn transferrable contextual encoder representations of

tokens and sentences. Many works have analyzed the BERT model and have developed

variants for it. Its study has even been referred as “BERTology” [Rogers et al., 2020].

2.3 Sparsity and the Simplex

We now shift our attention to projections onto the simplex. Such projections can play

multiple roles in a neural model. For example, as a weighting function in transformers’

attention mechanisms or as a way to parameterize discrete probability distributions. The

probability simplex △K−1 is a subset of ℝK such that, if and only if x ∈ △K−1, then 0 ≤

xk ≤ 1 for any k ∈ {1, . . . , K} and
∑K
k=1 xk = 1. As aforementioned, softmax is one such

projection that maps from s ∈ ℝK into it (Equation 2.4), but others exist, which we will

explore and use in this thesis.

Note how softmax(s) ∝ exp(s), that is, the softmax mapping (Equation 2.4) is el-

ementwise proportional to exp; therefore, it can never assign a weight of exactly zero.

Thus, unnecessary items are still taken into consideration to some extent. Since its out-

put sums to one, this invariably means less weight is assigned to the relevant items, po-

tentially harming performance and interpretability [Jain and Wallace, 2019]. This has

motivated a line of research on learning networks with sparse mappings [Martins and As-

tudillo, 2016, Niculae and Blondel, 2017, Louizos et al., 2018, Shao et al., 2019]. In the

following sections, we will explore projections that will be used or expanded in this thesis:

sparsemax [Martins and Astudillo, 2016], 𝛼-entmax [Blondel et al., 2019, Peters et al.,

2019], and SparseMAP [Niculae et al., 2018a].

21

2. Background

2.3.1 Sparsemax

Firstly, we will introduce the sparsemax mapping. Like softmax, sparsemax is differ-

entiable and has efficient forward and backward passes [Held et al., 1974, Martins and

Astudillo, 2016] (i.e., the transformation that happens at the input of a neural network

block, and the respective gradient computation required for backpropagation, respec-

tively), described in detail below.

Definition 6: sparsemax

The sparsemax transformation mapping [Martins and Astudillo, 2016], is given by

the unique solution to the convex optimization problem

sparsemax(s) B argmin
𝝃 ∈△K−1

∥𝝃 − s∥22 , (2.8)

where s ∈ ℝK .

Since Equation 2.8 is the Euclidean projection onto the probability simplex and so-

lutions can hit the boundary, where some coordinates are zero-valued, sparsemax can as-

sign probabilities of exactly zero; in contrast, softmax(s) is always dense, that is, it always

maps strictly to the relative interior of the simplex where all coordinates are non-zero.

As a projection onto a polytope, the solution is likely to fall on the set’s boundaries

or corners. In this case, points on the border of △K−1 have one or more zero coordi-

nates. From the optimality conditions of the sparsemax problem shown in Equation 2.8,

it follows that the solution must have the form:

22

2.3 Sparsity and the Simplex

Lemma 1: Proof in Martins and Astudillo [2016]

sparsemax(s) = max(s − 𝜏 , 0) , (2.9)

where the maximum is elementwise, and 𝜏 is the unique value that ensures that the

output of sparsemax sums to one.

Letting Z̄ be the set of nonzero coordinates in the solution (i.e., the support) the

normalization condition is equivalently 𝜏 =

∑
z∈Z̄ sz
|Z̄| . To derive the gradient, which allows

us to perform backpropagation (Equation 2.5), we can observe that small changes to s

almost always have no effect on the support Z̄, and so by differentiating Equation 2.9 we

obtain the backward pass for sparsemax:

𝜕 �̄�

𝜕 s̄
= I |Z̄| −

1

|Z̄|
11⊤ ,

where �̄� and s̄ denote the subsets of the respective vectors indexed by the support Z̄.

Outside of the support, the partial derivatives are zero (cf. the more general result can be

found in Peters et al. [2019, Proposition 2]).

In terms of computation, 𝜏 may be found numerically using root finding algorithms

on f (𝜏) = max(s−𝜏 , 0)−1. Alternatively, observe that it is enough to find Z̄. By showing

that sparsemax must preserve the ordering, that is, if sz′ > sz and z ∈ Z̄ then z′ ∈ Z̄, it

can be shown that Z̄ must consist of the k highest-scoring coordinates of s, where k

can be found by inspection after sorting s. This leads to a straightforward O(K logK)

algorithm due to Held [Held et al., 1974, pp. 16–17]. This can be further pushed to O(K)

using median pivoting algorithms [Condat, 2016, Peters et al., 2019]. We use a simpler

implementation based on repeatedly calling topk, doubling k until the optimal solution

is found. Since solutions get sparser over time and topk is GPU-accelerated in modern

libraries [Paszke et al., 2019], this strategy is very fast in practice.

23

2. Background

2.3.2 Entmax

We now focus on 𝛼-entmax [Blondel et al., 2019, Peters et al., 2019].

Definition 7: 𝛼-entmax

The 𝛼-entmax [Blondel et al., 2019, Peters et al., 2019] mapping is given by the

unique solution to the convex optimization problem

𝛼-entmax(z) B argmax
p∈△K−1

p⊤z + Ht𝛼 (p) , (2.10)

where for 𝛼 ≥ 1, Ht𝛼 is the Tsallis continuous family of entropies [Tsallis, 1988]:

Ht𝛼 (p)B

1

𝛼 (𝛼−1)
∑
j

(
p j − p𝛼j

)
, 𝛼 ≠ 1,

−∑
j p j log p j , 𝛼 = 1.

This family contains the well-known Shannon and Gini entropies, corresponding to

the cases 𝛼 = 1 and 𝛼 = 2, respectively.

Equation 2.10 involves a convex optimization subproblem. Using the definition of

Ht𝛼 , the optimality conditions may be used to derive its solution:

Lemma 2: Proof in Peters et al. [2019]

For any z, there exists a unique 𝜏★ such that

𝛼-entmax(z) = [(𝛼 − 1)z − 𝜏★1]1/(𝛼−1)
+ . (2.11)

where [·]+ is the positive part function, 1 denotes the vector of all ones, and 𝜏★,

which acts like a threshold, is the Lagrange multiplier corresponding to the constraint∑
i pi = 1.

24

2.3 Sparsity and the Simplex

Properties of 𝜶-entmax. The appeal of 𝛼-entmax rests on the following properties.

For 𝛼 = 1 (i.e., when Ht𝛼 becomes the Shannon entropy) it exactly recovers the softmax

mapping. For all 𝛼 > 1 it permits sparse solutions, in stark contrast to softmax. In

particular, for 𝛼 = 2, it recovers the sparsemax mapping [Martins and Astudillo, 2016],

which is piecewise linear. In-between, as 𝛼 increases, the mapping continuously gets

sparser as its curvature changes.

To compute the value of 𝛼-entmax, one must find the threshold 𝜏 such that the r.h.s.

in Equation 2.11 sums to one. Blondel et al. [2019] propose a general bisection algorithm.

Peters et al. [2019] introduce a faster, exact algorithm for 𝛼 = 1.5, and enable using 𝛼-

entmax with fixed 𝛼 within a neural network by showing that the 𝛼-entmax Jacobian w.r

.t. z for p★ = 𝛼-entmax(z) is

𝜕 𝛼-entmax(z)
𝜕z

= diag(s) − 1∑
j s j
ss⊤ , where si =

(p★i)

2−𝛼 , p★i > 0,

0, p★i = 0.

Our work in §4.3 furthers the study of 𝛼-entmax by providing a derivation of the

Jacobianw.r.t. the parameter 𝜶 , thereby allowing the shape and sparsity of the mapping

to be learned automatically. This is particularly appealing in the context of multi-head

attention mechanisms, where we shall show in §4.5.1 that different heads tend to learn

different sparsity behaviors.

Connections to softmax and sparsemax. The solution of sparsemax can be character-

ized through Equation 2.9 and thus each coordinate of the solution is a piecewise-linear

function. Visibly, this expression is recovered when setting 𝛼 = 2 in the 𝛼-entmax ex-

pression (Equation 2.11); for other values of 𝛼, the exponent induces curvature.

On the other hand, softmax can be shown to be the unique solution of the optimiza-

tion problem

softmax(z)i = argmax
p∈△K−1

p⊤z + ℍ(p) ,

25

2. Background

where ℍ(p) is the Shannon entropy. Indeed, setting the gradient to 0 yields the condition

log pi = z j − 𝜈i − 𝜏 − 1, where 𝜏 and 𝜈 > 0 are Lagrange multipliers for the simplex

constraints
∑
i pi = 1 and pi ≥ 0, respectively. Since the l.h.s. is only finite for pi > 0, we

must have 𝜈i = 0 for all i, by complementary slackness. Thus, the solution must have the

form pi ∝ exp(zi), yielding Equation 2.4.

2.3.3 SparseMAP

Theoretically, the approaches described in §2.3.1 and §2.3.2 apply to any value of K,

but many interesting applications involve a K that grows exponentially as a function of

sequence length. For such cases, we turn to structured prediction methods to handle the

combinatorial explosion. Of particular interest in this thesis is SparseMAP [Niculae et al.,

2018a,b], a structured extension of sparsemax.

Definition 8: SparseMAP

SparseMAP [Niculae et al., 2018a,b] is given by the solution of the optimization

problem

SparseMAP(t) B argmin
𝝃 ∈△ |Z|−1

∥A𝝃 − t∥22 , (2.12)

where A ∈ ℝD×K is the matrix of all possible configurations of the structured vari-

able, and t is a compact vector of variable scores of length D. The columns of A are

the configurations ai ∈ ℝD of the structured variable, and each configuration’s score

is given by sz B ⟨az , t⟩. More on structured prediction in §2.4.2.

SparseMAP has been used successfully to model structures such as trees and match-

ings, and Niculae et al. [2018a] apply an active set algorithm for evaluating it and com-

puting gradients efficiently, requiring only a primitive for computing argmaxz∈Z⟨az , t⟩,

which we detail below. While the argmin in Equation 2.12 is generally not unique,

Carathéodory’s theorem guarantees that solutions with support size at most D + 1 ex-

ist, and the active set algorithm enjoys linear and finite convergence to a very sparse

26

2.3 Sparsity and the Simplex

optimal distribution. Crucially, Equation 2.12 has a solution 𝝃★ such that the set Z̄ ={
z ∈ Z|𝜉★z > 0

}
grows only linearly with D, and therefore |Z̄| ≪ |Z|.

Algorithm 2.1 Active set algorithm for SparseMAP

Init: Z̄(0) = {z(0)} where z(0) ∈ argmaxz∈Z⟨az , t⟩ or a random structure.
1: for i in 1, . . . , N do
2: Compute 𝜏 (i) and �̂�

(i)
by solving the relaxed QP (Eq. 2.13). ⊲ Cholesky update.

3: 𝝃 (i) ← (1 − 𝛾)𝝃 (i−1) + 𝛾 �̂� (i) (with 𝛾 from Eq. 2.14).
4: if 𝛾 < 1 then
5: Drop the minimizer of Eq. 2.14 from Z̄(i).
6: else
7: Find most violated constraint, z(i) ← argminz∈Z 𝜈z. ⊲ Eq. 2.15, MAP oracle.
8: if 𝜈z (i) ≥ 0 then
9: return ⊲ Converged.

10: else
11: Z(i+1) ← Z(i) ∪ {z(i)}
12: end if
13: end if
14: end for

The active set method [Nocedal and Wright, 1999, sections 16.4 & 16.5] as applied

to the SparseMAP optimization problem [Equation 2.12; Niculae et al., 2018a] is a small

variation of the formulation of Nocedal and Wright for handling the equality constraint,

due to Martins et al. [2015, section 6]. Assume that we could identify the support, or active

set of an optimal solution 𝝃★, denoted Z̄B
{
z ∈ Z|𝜉★z > 0

}
. Then, given this set, we can

find the solution to Equation 2.12 by solving the lower-dimensional equality-constrained

optimization problem

minimize ∥ Ā�̄� − t∥2 s. t. 1⊤ �̄� = 1 ,

where we denote by Ā and �̄� the restrictions of A and 𝝃 to the active set of structures Z̄.

The solution to this equality-constrained quadratic program (QP) satisfies the Karush-

Kuhn-Tucker (KKT) optimality conditions,

Ā⊤ Ā 1

1⊤ 0

�̄�

𝜏

 =

Ā⊤t

1

 . (2.13)

27

2. Background

However, the optimal support is not known ahead of time. The active set algorithm

attempts to guess the support greedily, at each iteration either (if the solution of Equa-

tion 2.13 is not feasible for Equation 2.12) dropping a structure from Z̄, or (otherwise)

adding a new structure. Since the support changes one structure at a time, the design ma-

trix in Equation 2.13 gains or loses one row and column, so we may efficiently maintain

its Cholesky decomposition via rank-one updates.

We now give more details about the computation. Denote the solution of Eq. 2.13,

(extended with zeroes), by �̂� ∈ △ |Z|−1. Since we might not have the optimal Z̄yet, �̂� can

be infeasible (some coordinates may be negative.) To account for this, we take a partial

step in its direction,

𝝃 (i+1) = (1 − 𝛾)𝝃 (i) + 𝛾 �̂� (i+1)

where to ensure feasibility, the step size is given by

𝛾 = min

(
1, min

z∈Z̄;𝜉 (i)z >𝜉z

𝜉
(i)
z

𝜉
(i)
z − 𝜉z

)
. (2.14)

If, on the other hand, �̂� is feasible for Equation 2.12, (so 𝛾 = 1), we check whether we

have a globally optimal solution. By construction, �̂� satisfies all KKT conditions except

perhaps dual feasibility 𝝂 ≥ 0, where 𝜈z is the dual variable (Lagrange multiplier) cor-

responding to the constraint 𝜉z ≥ 0. Denote 𝝁(i) B A𝝃 (i) = Ā�̄� (i). For any z ∉ Z̄, the

corresponding dual variable must satisfy

𝜈z = 𝜏 (i) − ⟨az , t − 𝝁(i)⟩ . (2.15)

If the smallest dual variable is positive, then our current guess satisfies all optimality con-

ditions. To find the smallest dual variable we can equivalently solve argmaxz∈Z⟨az , t −

𝝁(i)⟩, which is a maximization (MAP) oracle call. If the resulting 𝜈z is negative, then z is

the index of the most violated constraint 𝜉z ≥ 0; it is thus a good choice of structure to

add to the active set.

28

2.4 Latent Variable Models

The full procedure is given in Algorithm 2.1. The backward pass is computed by

implicit differentiation of Equation 2.13 w.r.t. t, giving, as in Niculae et al. [2018a],

𝜕 �̄�

𝜕t
= Ā

(
S − ss⊤/s

)
, where S = (Ā⊤ Ā)−1 , s = S1, s = 1⊤S1 .

It is possible to apply the ℓ2 regularization term only to a subset of the rows of A, as is

more standard in the graphical model literature. We refer the reader to the presentation

in Martins et al. [2015], Niculae et al. [2018a] for this extension.

2.4 Latent Variable Models

In Chapter 5, we will focus on making neural models more compact. To that effect,

we propose a novel way to train latent variable models. Latent variable models differ

from the models described in §2.1, which only have observed variables (X andY). Latent

variables are variables that are not observed (i.e., hidden) but are assumed to be correlated

with the observed variables. Even though the training of these models may be difficult,

there are significant advantages to this approach. Particularly, these models often need

fewer parameters, making them more compact. Another source of compactness is that

these models have built-in inductive bias, that is, they make assumptions about how the

variables interact, yielding better interpretability and more compact representations.

Mathematically, the possibility of a latent variable being present in the modeling of

pX (x |𝜃) stems from the simple observation that

pX (x |𝜃) =
∑︁
z

p(x , z) =
∑︁
z

𝜋 (z |x; 𝜃)pX (x |𝜃) , (2.16)

where z is the underlying latent or hidden variable and 𝜋 (z |x; 𝜃) = p(z |x; 𝜃) is the prob-

ability of an assignment z given the current observed x.

When discussing latent variable models, we assume throughout that there are ob-

served stochastic variables x ∈ X and latent stochastic variables z ∈ Z. The overall fit to

29

2. Background

a dataset D is LD(𝜃) =
∑
x∈DLx (𝜃), where the loss of each observation,

Lx (𝜃) = 𝔼𝜋 (z |x;𝜃) [ℓ (x , z; 𝜃)] =
∑︁
z∈Z

𝜋 (z |x; 𝜃) ℓ (x , z; 𝜃) , (2.17)

is the expected value of a downstream loss ℓ (x , z; 𝜃)1 under a probability model 𝜋 (z |x; 𝜃)

of the latent variable; in other words, the latent variable z is marginalized to compute this

loss. Equation 2.17 might also include a regularizer R(𝜃). Note that, with this loss, we are

assuming that the latent variable z is discrete.2 To model complex data, one parameter-

izes both the downstream loss and the pmf over latent assignments using neural networks,

due to their flexibility and capacity [Kingma and Welling, 2014].

2.4.1 Discrete Latent Variables

In this thesis, we will focus on discrete latent variables, where |Z| is finite but possibly

very large. One example is when 𝜋 (z |x; 𝜃) specifies a Categorical distribution, parame-

terized by a vector 𝝃 ∈ △ |Z|−1. To obtain 𝝃 , a neural network computes a vector of scores

s ∈ ℝ|Z|, one score for each assignment, which is then mapped to the probability simplex,

typically via 𝝃 = softmax(s). Another example is when Z is a structured (combinatorial)

set, such as Z = {0, 1}D. In this case, |Z| grows exponentially with D and it is infea-

sible to enumerate and score all possible assignments. For this structured case, scoring

assignments involves decomposition into parts, which we describe in §2.4.2.

Training such models requires summing the contributions of all assignments of the

latent variable, which involves as many as |Z| evaluations of the downstream loss. When

Z is not too large, the expectation may be evaluated explicitly, and learning can proceed

with exact gradient updates. If Z is large, and/or if ℓ is an expensive computation, eval-

uating the expectation becomes prohibitive. In such cases, practitioners typically turn to

1We swapped the probabilistically-grounded pX (x |𝜃) in Equation 2.16 for a more general ℓ (x , z; 𝜃) in
order to englobate any possible loss, probabilistic or non-probabilistic, and to include a optional depen-
dency on z.

2We refer the reader to Kim et al. [2018] for other possibilities, such as continuous latent variables, and
more details in general.

30

2.4 Latent Variable Models

Monte Carlo (MC) estimates of ∇𝜃Lx (𝜃) derived from latent assignments sampled from

𝜋 (z |x; 𝜃). Under an appropriate learning rate schedule, this procedure converges to a

local optimum of Lx (𝜃) as long as gradient estimates are unbiased [Robbins and Monro,

1951]. Next, we describe the two current main strategies for Monte Carlo estimation of

this gradient. Later, in Chapter 5, we propose our deterministic alternative, based on

sparsifying 𝜋 (z |x , 𝜃).

Monte Carlo gradient estimates. Let 𝜃 = (𝜃𝜋 , 𝜃ℓ), where 𝜃𝜋 is the subset of weights

that 𝜋 depends on, and 𝜃ℓ the subset of weights that ℓ depends on. Given a sam-

ple z ∼ 𝜋 (z |x; 𝜃𝜋), an unbiased estimate of the gradient for Equation 2.17 w.r.t. 𝜃ℓ is

∇𝜃ℓLx (𝜃) ≈ ∇𝜃ℓℓ (x , z; 𝜃ℓ). Unbiased estimation of ∇𝜃𝜋Lx (𝜃) is more difficult, since 𝜃𝜋 is

involved in the sampling of z, but can be done with the Score Function Estimator [SFE;

Rubinstein, 1976, Paisley et al., 2012]: ∇𝜃𝜋Lx (𝜃) ≈ ℓ (x , z; 𝜃ℓ) ∇𝜃𝜋 log 𝜋 (z |x; 𝜃𝜋), also

known as reinforce [Williams, 1992]. The SFE is powerful and general, making no

assumptions on the form of z or ℓ , requiring only a sampling oracle and a way to as-

sess gradients of log 𝜋 (z |x; 𝜃𝜋). However, it comes with the cost of high variance. Mak-

ing the estimator practically useful requires variance reduction techniques such as base-

lines [Williams, 1992, Gu et al., 2016] and control variates [Wang et al., 2013, Tucker

et al., 2017, Grathwohl et al., 2018]. Variance reduction can also be achieved with Rao-

Blackwellization techniques such as sum and sample [Casella and Robert, 1996, Ran-

ganath et al., 2014, Liu et al., 2019], which marginalizes an expectation over the top-k

elements of 𝜋 (z |x; 𝜃𝜋) and takes a sample estimate from the complement set.

Continuous relaxations. For continuous latent variables, low-variance pathwise gradi-

ent estimators can be obtained by separating the source of stochasticity from the sam-

pling parameters, using the so-called reparameterization trick [Kingma and Welling, 2014,

Rezende et al., 2014]. For discrete latent variables, reparameterizations can only be ob-

tained by introducing a step function like argmax, which has null gradients almost ev-

erywhere. Replacing the gradient of argmax with a nonzero surrogate like the identity

31

2. Background

function, known as straight-through [Bengio et al., 2013], or with the gradient of soft-

max, known as Gumbel-Softmax [Maddison et al., 2017, Jang et al., 2017], leads to a biased

estimator that can still perform well in practice. Continuous relaxations like Straight-

Through and Gumbel-Softmax are only possible under a further modeling assumption

that ℓ is defined continuously (thus differentiably) in a neighborhood of the indicator

vector z = ez for every z ∈ Z.

2.4.2 Structured Latent Variables

Many models of interest involve structured (or combinatorial) latent variables. In this

thesis, we assume that a latent z can be represented as a bit-vector — i.e., a vector of discrete

binary variables az ∈ {0, 1}D. This assignment of binary variables may involve global

factors and constraints (e.g., tree constraints, or budget constraints on the number of active

variables, i.e.,
∑
i [az]i ≤ B, where B is the maximum number of variables allowed to

activate at the same time). In such structured problems, |Z| increases exponentially with

D, making an exact evaluation of all possible ℓ (x , z; 𝜃) prohibitive.

Structured prediction typically handles this combinatorial explosion by parameter-

izing scores for individual binary variables and interactions within the global structured

configuration, yielding a compact vector of variable scores t = g (x; 𝜃) ∈ ℝD (e.g., log-

potentials for binary attributes), with D ≪ |Z|. Then, the score of some global configu-

ration z ∈ Z is sz B ⟨az , t⟩. The variable scores induce a unique Gibbs distribution over

structures, given by 𝜋 (z |x; 𝜃) ∝ exp(⟨az , t⟩). Equivalently, defining A ∈ ℝD×|Z| as the

matrix with columns az for all z ∈ Z, we consider the vector of probabilities parameter-

ized by softmax(s), where s = A⊤t. (In the unstructured case, A = I .)

In practice, however, we cannot materialize the matrix A or the global score vector s,

let alone compute the softmax and the sum in Equation 2.17. The SFE, however, can still

be used, provided that exact sampling of z ∼ 𝜋 (z |x; 𝜃) is feasible, and efficient algorithms

exist for computing the normalizing constant
∑
z′ exp(⟨az′ , t⟩) [Wainwright and Jordan,

2008], needed to compute the probability of a given sample.

32

3
A Simple and Effective Approach

to Automatic Post-Editing with
Transfer Learning

Contents
3.1 Motivation . 35
3.2 Previous Work . 37
3.3 Automatic Post-Editing with BERT 38
3.4 Experiments . 41
3.5 Subsequent Work . 45
3.6 Final Remarks and Chapter Summary 47

33

3. A Simple and Effective Approach to APE with Transfer Learning

34

3.1 Motivation

In the following chapter, we will focus on this thesis’ goal of paving the way for more

data-efficient neural network models. To achieve this, we use weak supervision in the

form of transfer learning.

When the work presented in this chapter was published, the use of pre-trained trans-

formers (§2.2.3) in NLP generation tasks had not been explored as much as it has been

in recent years. For instance, the work that proposed BERT [Devlin et al., 2019] had

only been recently released, and NLP researchers were quickly interested in using it in a

variety of tasks. Currently, other variants of pre-trained transformers have been released,

such as GPT-3 [Brown et al., 2020] and T5 [Raffel et al., 2020], which can generate nat-

ural language. However, as BERT was a transformer encoder, it was not straightforward

to consider it to be used as a generation model.

In this work, we presented a simple and effective solution to this problem, using the

scarcity of automatic post-editing [APE; Simard et al., 2007] data as a playground to

explore the transfer learning capacity of a large transformer encoder model in a sequence-

to-sequence task, being one of the first works to do so.

This chapter is based on Correia and Martins [2019].

3.1 Motivation

Automatic post-editing is inspired by human post-editing, in which a human translator

corrects mistakes made by a machine translation (MT) system. The goal of APE is to

automatically correct the mistakes produced by a black-box MT system. APE is particu-

larly appealing for rapidly customizing MT, avoiding training new systems from scratch.

Interfaces where human translators can post-edit and improve the quality of MT sen-

tences [Alabau et al., 2014, Federico et al., 2014, Denkowski, 2015, Hokamp, 2018] are a

common data source for APE models since they provide triplets of source sentences (src),

machine translation outputs (mt), and human post-edits (pe).

Unfortunately, human post-edits are typically scarce. Existing APE systems circum-

35

3. A Simple and Effective Approach to APE with Transfer Learning

vent this by generating artificial triplets [Junczys-Dowmunt and Grundkiewicz, 2016,

Negri et al., 2018]. However, this requires access to a high-quality MT system, similar

to (or better than) the one used in the black-box MT itself. This spoils the motivation

of APE as an alternative to large-scale MT training in the first place: the time to train

MT systems to extract these artificial triplets, combined with the time to train an APE

system on the resulting large dataset, may well exceed the time to train an MT system

from scratch.

When the current work presented was published, the state of the art in APE used a

transformer [Vaswani et al., 2017] variant with two encoders, for the src and mt, and

one decoder, for pe. This system was named the Dual-Source Transformer [Junczys-

Dowmunt and Grundkiewicz, 2018, Tebbifakhr et al., 2018]. These systems greatly

improved the MT baseline when concatenating human post-edited data and artificial

triplets. However, few successes were known using only the actual data created by the

human post-editors.

Meanwhile, there had been many successes of transfer learning for NLP (§2.2.3):

models such as CoVe [McCann et al., 2017], ELMo [Peters et al., 2018], OpenAI

GPT [Radford et al., 2018], ULMFiT [Howard and Ruder, 2018], and BERT [Devlin

et al., 2019] obtain powerful representations by training large-scale language models and

using them to improve performance in many sentence-level and word-level tasks. How-

ever, a language generation task such as APE presents additional challenges.

In this chapter, we build upon the successes above and show that transfer learning is

an effective and time-efficient strategy for APE, using a pre-trained BERT model. This

is an appealing strategy in practice: while large language models like BERT are expensive

to train, this step is only done once and covers many languages, reducing engineering

efforts substantially. In contrast, artificial triplets for APE need to be created separately for

every language pair that one wishes to train an APE system for, which ends up increasing

the computational and time resources in the long run.

On the other hand, using transfer learning with only the tiny shared task dataset (23K

36

3.2 Previous Work

triplets), our proposed strategy outperforms this baseline considerably, by −4.9 TER and

+7.4 BLEU in the English-German WMT 2018 APE shared task, with only 3 hours of

training on a single GPU. Adding the artificial eSCAPE dataset [Negri et al., 2018] leads

to a performance of 17.15 TER, a new state of the art at the time.

Our main contributions are the following:

• We combine the ability of BERT to handle sentence pair inputs together with

its pre-trained multilingual model, to use both the src and mt in a cross-lingual

encoder, that takes a multilingual sentence pair as input.

• We show how pre-trained BERT models can also be used and fine-tuned as the

decoder in a language generation task.

• We make a thorough empirical evaluation and ablation study of different ways of

coupling BERT models in an APE system, comparing different options of param-

eter sharing, initialization, and fine-tuning.

3.2 Previous Work

In their Dual-Source Transformer model, Junczys-Dowmunt and Grundkiewicz [2018]

also found gains by tying together encoder parameters, and the embeddings of both en-

coders and decoder. Our work confirms this but shows further gains by using segment

embeddings and more careful sharing and initialization strategies. Sachan and Neubig

[2018] explore parameter sharing between transformer layers. However, they focus on

sharing decoder parameters in a one-to-many multilingual MT system. In our work, we

share parameters between the encoder and the decoder.

As stated in §3.4, Bérard et al. [2017] also showed improved results over the MT

baseline, using exclusively the shared task data. Their system outputs edit operations that

decide whether to insert, keep or delete tokens from the machine-translated sentence.

Instead of relying on edit operations, our approach mitigates the small amount of data

37

3. A Simple and Effective Approach to APE with Transfer Learning

with transfer learning through BERT.

Our work makes use of key advances in transfer learning for NLP [Peters et al., 2018,

Howard and Ruder, 2018, Radford et al., 2018, Devlin et al., 2019]. Pre-training these

large language models has largely improved the state of the art of the GLUE bench-

mark [Wang et al., 2018]. Particularly, our work uses BERT [Devlin et al., 2019] and

makes use of the representations obtained not only in the encoder but also on the decoder

in a generation task.

More closely related to our work, Lample and Conneau [2019] pre-trained a BERT-

like language model using parallel data, which they used to initialize the encoder and de-

coder for supervised and unsupervised MT systems. They also used segment embeddings

(along with word and position embeddings) to differentiate between a pair of sentences

in different languages. However, this is only used in one of the pre-training phases of the

language model (translation language modeling) and not in the downstream task. In our

work, we use segment embeddings during the downstream task itself, which is a perfect

fit for the APE task.

3.3 Automatic Post-Editing with BERT

3.3.1 BERT as a Cross-Lingual Encoder

Our transfer learning approach is based on the bidirectional encoder representations from

transformers [BERT; Devlin et al., 2019]. This model obtains deep bidirectional repre-

sentations by training a transformer [Vaswani et al., 2017] with a large-scale dataset in a

masked language modeling task where the objective is to predict missing words in a sen-

tence. In our experiments, we use the BERTBASE model, which is composed of N=12

self-attention layers, hidden size K=768, H=12 attention heads, and feed-forward inner

layer size F=3072. In addition to the word and learned position embeddings, BERT also

has segment embeddings to differentiate between a segment A and a segment B — this

is useful for tasks such as natural language inference, which involves two sentences. In

38

3.3 Automatic Post-Editing with BERT

Context
Attention

(Multi-Head Att.)

Input
Embedding

Output
Probabilities

Add & Norm

Linear

Softmax

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed Forward

Feed Forward

N×

N×

Self-Attention
(Multi-Head Att.)

Self-Attention
(Multi-Head Att.)

Output
Embedding

Segments
Positions

Tokens pe1, …, peMmt1, …, mtKsrc1, …, srcN

B, …, BB, …, BA, …, A
0, …, M-10, …, K-10, …, N-1

Figure 3.1: Dual-Source BERT. Dashed lines show which blocks have shared parameters
in our best configuration.

the case of APE, there is also a pair of input sentences (src, mt) which are in different

languages. Since one of the released BERT models was jointly pre-trained on 104 lan-

39

3. A Simple and Effective Approach to APE with Transfer Learning

guages,1 we use this multilingual BERT pre-trained model to encode the bilingual input

pair of APE.

Therefore, the whole encoder of our APE model is the multilingual BERT: we encode

both src and mt in the same encoder and use the segment embeddings to differentiate

between languages (Figure 3.1). We reset positional embeddings when the mt starts, since

it is not a continuation of src.

3.3.2 BERT as a Decoder

Prior work has incorporated pre-trained models as encoders, but not as decoders of

sequence-to-sequence models. Doing so requires a strategy for generating fluently from

the pre-trained model. Note that, when using BERT as a decoder, its bidirectionality is

lost, since the model cannot look at words that have not been generated yet, and it is an

open question of how to learn decoder-specific blocks (e.g., context attention), which are

absent in the pre-trained model.

One of our key contributions is to use BERT in the decoder by experimenting with

different strategies for initializing and sharing the self and context attention layers and the

position-wise feed-forward layers. We tie together the encoder and decoder embeddings

weights (word, position, and segment) along with the decoder output layer (transpose of

the word embedding layer). We use the same segment embedding for the target sentence

(pe) and the second sentence in the encoder (mt) since they are in the same language.

The full architecture is shown in Figure 3.1.

We experiment with the following strategies for coupling BERT pre-trained models

in the decoder:

• Transformer. A transformer decoder as described in Vaswani et al. [2017] without

any shared parameters, with the same dimensions as BERTBASE but with randomly

initialized weights.

1https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac
61/multilingual.md

40

https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/multilingual.md
https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/multilingual.md

3.4 Experiments

• Pre-trained BERT. This initializes the decoder with the pre-trained BERT model.

The only component initialized randomly is the context attention (CA) layer, which

is absent in BERT. Unlike in the original BERT model — which only encodes sen-

tences — a mask in the self-attention is required to prevent the model from looking

to subsequent tokens in the target sentence.

• BERT initialized context attention. Instead of a random initialization, we ini-

tialize the context attention layers with the weights of the corresponding BERT

self-attention layers.

• Shared self-attention. Instead of just having the same initialization, the self-

attentions (SA) in the encoder and decoder are tied during training.

• Context attention shared with self-attention. We take a step further and tie the

context attention and self-attention weights — making all the attention transforma-

tion matrices (self and context) in the encoder and decoder tied.

• Shared feed-forward. We tie the feed-forward weights (FF) between the encoder

and decoder.

3.4 Experiments

We now describe our experimental results. Our models were implemented on a fork

of OpenNMT-py [Klein et al., 2017] using HuggingFace’s transformers library.2 Our

model’s implementation is publicly available.3

Datasets. We use the data from the WMT 2018 APE shared task [Chatterjee et al.,

2018] (English-German SMT), which consists of 23K triplets for training, 1K for val-

idation, and 2K for testing. In some experiments, we use the eSCAPE corpus [Negri

et al., 2018], which comprises about 8M sentences; when doing so, we oversample 35x

2https://github.com/huggingface/transformers
3https://github.com/deep-spin/OpenNMT-APE

41

https://github.com/huggingface/transformers
https://github.com/deep-spin/OpenNMT-APE

3. A Simple and Effective Approach to APE with Transfer Learning

TER↓ BLEU↑
Transformer decoder 20.33 69.31
Pre-trained BERT 20.83 69.11
with CA← SA 18.91 71.81
and SA↔ Encoder SA 18.44 72.25
and CA↔ SA 18.75 71.83
and FF↔ Encoder FF 19.04 71.53

Table 3.1: Ablation study of decoder configurations, by gradually having more shared
parameters between the encoder and decoder (trained without synthetic data).↔ denotes
parameter tying and← an initialization.

the shared task data to cover 10% of the training data. We segment words with Word-

Piece [Wu et al., 2016], as used in the Multilingual BERT. At training time, we discard

triplets with 200+ tokens in the combination of src and mt or 100+ tokens in pe. For eval-

uation, we use TER [Snover et al., 2006] and tokenized BLEU [Papineni et al., 2002].

Training Details. We use Adam [Kingma and Ba, 2015] with a triangular learning rate

schedule that increases linearly during the first 5,000 steps until 5×10−5 and has a linear

decay afterward. When using BERT components, we use a ℓ2 weight decay of 0.01. We

apply dropout [Srivastava et al., 2014] with pdrop=0.1 to all layers and use label smooth-

ing with 𝜖 =0.1 [Pereyra et al., 2017]. For the small data experiments, we use a batch size

of 1024 tokens and save checkpoints every 1,000 steps; when using the eSCAPE corpus,

we increase this to 2048 tokens and 10,000 steps. The checkpoints are created with the

exponential moving average strategy of Junczys-Dowmunt et al. [2018b] with a decay of

10−4. At test time, we select the model with the best TER on the development set and

apply beam search with a beam size of 8 and using an average length penalty.

42

3.4
E
xperim

ents

test 2016 test 2017 test 2018

Model Train Size TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑
MT baseline (Uncorrected) 24.76 62.11 24.48 62.49 24.24 62.99

Bérard et al. [2017] 23K 22.89 — 23.08 65.57 — —

Junczys-Dowmunt and Grundkiewicz [2018]
5M

18.92 70.86 19.49 69.72 — —
Junczys-Dowmunt and Grundkiewicz [2018]×4 18.86 71.04 19.03 70.46 — —

Tebbifakhr et al. [2018]
8M

— — — — 18.62 71.04
Junczys-Dowmunt and Grundkiewicz [2018] 17.81 72.79 18.10 71.72 — —
Junczys-Dowmunt and Grundkiewicz [2018]×4 17.34 73.43 17.47 72.84 18.00 72.52

Dual-Source Transformer†

23K

27.80 60.76 27.73 59.78 28.00 59.98
BERT Enc. + Transformer Dec. (Ours) 20.23 68.98 21.02 67.47 20.93 67.60
BERT Enc. + BERT Dec. (Ours) 18.88 71.61 19.03 70.66 19.34 70.41
BERT Enc. + BERT Dec. ×4 (Ours) 18.05 72.39 18.07 71.90 18.91 70.94

BERT Enc. + BERT Dec. (Ours)
8M

16.91 74.29 17.26 73.42 17.71 72.74
BERT Enc. + BERT Dec. ×4 (Ours) 16.49 74.98 16.83 73.94 17.15 73.60

Table 3.2: Results on the WMT 2016–18 APE shared task datasets. Our single models trained on the 23K dataset took only 3h20m
to converge on a single Nvidia GeForce GTX 1080 GPU, while results for models trained on 8M triplets take approximately 2 days on
the same GPU. Models marked with “×4” are ensembles of 4 models. Dual-Source Transformer† is a comparable re-implementation
of Junczys-Dowmunt and Grundkiewicz [2018]. Best results for each training size (23K and 8M) are shown in bold.

43

3. A Simple and Effective Approach to APE with Transfer Learning

Initialization and Parameter Sharing. Table 3.1 compares the different decoder strate-

gies described in §3.3.2 on the WMT 2018 validation set. The best results were achieved

by sharing the self-attention between encoder and decoder, and by initializing (but not

sharing) the context attention with the same weights as the self-attention. Regarding

the self-attention sharing, we hypothesize that its benefits are due to both encoder and

decoder sharing a common language in their input (in the mt and pe sentence, respec-

tively). Future work will investigate if this is still beneficial when the source and target

languages are less similar. On the other hand, the initialization of the context attention

with BERT’s self-attention weights is essential to reap the benefits of BERT representa-

tions in the decoder — without it, using BERT decreases performance when compared to

a regular transformer decoder. This might be because context attention and self-attention

share the same neural block architecture (multi-head attention) and thus the context at-

tention benefits from the pre-trained BERT’s better weight initialization. No benefit was

observed from sharing the feed-forward weights.

Final Results and Analysis. Finally, Table 3.2 shows our results on the WMT 2016–

18 test sets. The model named BERT Enc. + BERT Dec. corresponds to the best setting

found in Table 3.1, while BERT Enc. + Transformer Dec. only uses BERT in the encoder.

We show results for single models and ensembles of 4 independent models.

Using the small shared task dataset only (23K triplets), our single BERT Enc. + BERT

Dec. model surpasses the MT baseline by a large margin (−4.90 TER in test 2018).

The only system we are aware to beat the MT baseline with only the shared task data

is Bérard et al. [2017], which we also outperform (−4.05 TER in test 2017). With only

about 3 GPU hours and on a much smaller dataset, our model reaches a performance that

is comparable to an ensemble of the best WMT 2018 system with an artificial dataset of

5M triplets (+0.02 TER in test 2016), which is much more expensive to train. With 4×

ensembling, we get competitive results with systems trained on 8M triplets.

When adding the eSCAPE corpus (8M triplets), performance surpasses the state of

44

3.5 Subsequent Work

the art in all test sets. By ensembling, we improve even further, achieving a final 17.15

TER score in test 2018 (−0.85 TER than the previous state of the art).

3.5 Subsequent Work

After our publication [Correia and Martins, 2019], many works have since been pub-

lished exploring the use of large pre-trained language models for generation purposes (e.

g., [Zhang et al., 2019, Chen et al., 2020]), and our work shown in this chapter was one

of the first to do so.

Most closely related to our work, and co-authored by the author of this thesis, Lopes

et al. [2019] used our model on the harder English-German NMT APE subtask of WMT

2019, winning the shared task that year. To obtain this result, the transfer learning capa-

bilities of BERT were not enough and further engineering effort was required. Particu-

larly, a conservativeness factor was added during beam decoding to constrain the changes

the APE system can make to the mt output. Furthermore, the authors used a data weight-

ing method to augment the importance of data samples that have lower TER. By doing

this, data samples that required less post-editing effort are assigned higher weights dur-

ing the training loop. Since the NMT system does very few errors on this domain this

data weighting is important for the APE model to learn to do fewer corrections to the mt

output. However, their approach required the creation of an artificial dataset to obtain a

performance that improved the MT baseline. Further investigation is required in APE

to come up with better methods that obtain improved results compared to the baseline

using only real post-edited data in these smaller APE datasets based on NMT outputs

rather than SMT ones.

In the following years of the APE subtask, we have seen models that have been in-

spired by our BERT model. Particularly, Lee et al. [2020] used an XLM [Lample and

Conneau, 2019] inspired model in the 2020 APE WMT subtask, instead of the multi-

lingual BERT that our work used. Another submission to that year’s subtask pre-trained

45

3. A Simple and Effective Approach to APE with Transfer Learning

their own BERT-like model on a cross-lingual dataset, making it predict the target lan-

guage during this pre-training stage [Wang et al., 2020].

On the data-efficiency side, Góis et al. [2020] performed experiments on the APE

subtask, using only the real post-edited data, without resorting to expensive synthetic

dataset creation. In their case, they also leveraged transfer learning using a BERT en-

coder, but increased the decoder’s supervision to include real keystrokes data, from hu-

man post-editors. While not surpassing our approach, we consider this to also be a

promising direction: increasing inductive bias in an effort to decrease larger data de-

pendency. To address the more difficult challenge of doing APE on NMT outputs, Chol-

lampatt et al. [2020] used our model to explore how many training instances are needed

to achieve a better performance than the harder do-nothing NMT baseline and have con-

cluded that, while substantial improvements for NMT require more data samples than

SMT, the APE model can still improve upon the baseline with relatively few instances.

To improve future APE research, they have released a more appropriately-sized dataset

of real post-edited NMT data of 161K training instances based on subtitles (SubEdits).

The approach conducted in this chapter has also been successfully generalized to other

tasks. Kodama et al. [2020] used our model for the generation of responses of a dialogue

system, where, in the input, instead of src and a tentative mt output, they concatenate

a question with meta-data that indicates how the system should generate a response in

terms of emotion and intimacy. As in our APE case, they also achieve good performance

on a low-resource dataset. Even more generally, Huang et al. [2021] identifies APE as a

part of a family of generation tasks in which there are multiple inputs. Inspired by our

approach, they also tackle the low-resource nature of these tasks by leveraging weak su-

pervision through transfer learning. To mitigate catastrophic forgetting, they propose a

gradual fine-tuning approach, in which they do an additional fine-tuning stage to adapt the

pre-trained language model to a single-source sequence-to-sequence task, before finally

fine-tuning on the multiple-source sequence-to-sequence task. They achieve increased

performance on low-resource datasets, not only for APE but also for multi-source trans-

46

3.6 Final Remarks and Chapter Summary

lation and document-level translation.

3.6 Final Remarks and Chapter Summary

In this chapter, we proposed a transfer learning approach to APE using BERT pre-trained

models and careful parameter sharing. We explored various ways of coupling BERT

in the decoder for language generation. We found it beneficial to initialize the context

attention of the decoder with BERT’s self-attention and to tie together the parameters

of the self-attention layers between the encoder and decoder. Using a small dataset, our

results are competitive with systems trained on a large amount of artificial data, with much

faster training. By adding artificial data, we obtain a new state of the art in APE. We hope

that our approach will continue to inspire future work in leveraging weak supervision

through transfer learning to improve performance on generation tasks that have scarce

real data.

47

3. A Simple and Effective Approach to APE with Transfer Learning

48

4
Adaptively Sparse Transformers

Contents
4.1 Motivation . 51
4.2 Previous Work . 53
4.3 Adaptively Sparse Transformers . 54
4.4 Experiments . 56
4.5 Analysis . 57
4.6 Subsequent Work . 69
4.7 Final Remarks and Chapter Summary 71

49

4. Adaptively Sparse Transformers

50

4.1 Motivation

In the previous chapter, we used transfer learning as a way to weakly supervise a trans-

former model on a low-resource task. While we achieved good results with this approach,

the transformer architecture remains largely uninterpretable, which is unappealing if one

wishes to find the reasons behind the strengths and shortcomings of the model. To this

end, we introduce in this chapter an approach that uses learnable sparsity on each of

the transformer’s attention heads. In the context of this thesis, this contribution leads to

neural models that are more transparent in their decisions. This increased transparency

will prove useful in order to be able to more easily interpret the roles that each attention

head ends up playing in the overall model.

This chapter is based on Correia, Niculae, and Martins [2019].

4.1 Motivation

At the heart of the transformer architecture (§2.2.2) lie multi-head attention mechanisms:

each word is represented by multiple different weighted averages of its relevant context.

As suggested in recent works on interpreting attention head roles, separate heads may

learn to look for various relationships between tokens [Tang et al., 2018, Raganato and

Tiedemann, 2018, Mareček and Rosa, 2018, Tenney et al., 2019, Voita et al., 2019].

The attention distribution of each head in the transformer is predicted typically using

the softmax normalizing transformation. As a result, all context words have non-zero

attention weight. Recent work on single attention architectures suggests that using sparse

normalizing transformations in attention mechanisms such as sparsemax – which can

yield exactly zero probabilities for irrelevant words – may improve performance and in-

terpretability [Malaviya et al., 2018, Deng et al., 2018, Peters et al., 2019]. Qualitative

analysis of attention heads [Vaswani et al., 2017, Figure 5] suggests that, depending on

what phenomena they capture, heads tend to favor flatter or more peaked distributions.

Recent works have proposed sparse transformers [Child et al., 2019] and adaptive

span transformers [Sukhbaatar et al., 2019]. However, the “sparsity" of those models only

51

4. Adaptively Sparse Transformers

The qu
ick

bro
wn

fox jum
ps

ov
er The qu

ick
bro

wn
fox jum

ps
ov

er
The qu

ick
bro

wn
fox jum

ps
ov

er

head 1

head 4
head 3
head 2

Sparse Transformer Adaptive Span
Transformer

Adaptively Sparse
Transformer (Ours)

Figure 4.1: Attention distributions of different self-attention heads for the time step of
the token “over”, shown to compare our model to other related work. While the Sparse
Transformer [Child et al., 2019] and the Adaptive Span Transformer [Sukhbaatar et al.,
2019] only attend to words within a contiguous span of the past tokens, our model is
not only able to obtain different and not necessarily contiguous sparsity patterns for each
attention head, but is also able to tune its support over which tokens to attend adaptively.

limits the attention to a contiguous span of past tokens, while in this work we propose a

highly adaptive transformer model that is capable of attending to a sparse set of words

that are not necessarily contiguous. Figure 4.1 shows the relationship of these methods

with ours.

Our contributions are the following:

• We introduce sparse attention into the transformer architecture, showing that it

eases interpretability and leads to slight accuracy gains.

• We propose an adaptive version of sparse attention, where the shape of each at-

tention head is learnable and can vary continuously and dynamically between the

dense limit case of softmax and the sparse, piecewise-linear sparsemax case.1

• We make an extensive analysis of the added interpretability of these models, identi-

fying both crisper examples of attention head behavior observed in previous work,

as well as novel behaviors unraveled thanks to the sparsity and adaptivity of our

proposed model.

1Code and pip package available at https://github.com/deep-spin/entmax.

52

https://github.com/deep-spin/entmax

4.2 Previous Work

4.2 Previous Work

Sparse attention. Prior work has developed sparse attention mechanisms, including

applications to NMT [Martins and Astudillo, 2016, Malaviya et al., 2018, Niculae and

Blondel, 2017, Shao et al., 2019, Maruf et al., 2019]. Peters et al. [2019] introduced the

entmax function this work builds upon (§2.3.2). In their work, there is a single atten-

tion mechanism that is controlled by a fixed 𝛼. In contrast, this is the first work to allow

such attention mappings to dynamically adapt their curvature and sparsity, by automati-

cally adjusting the continuous 𝛼 parameter. We also provide the first results using sparse

attention in a transformer model.

Fixed sparsity patterns. Recent research improves the scalability of Transformer-like

networks through static, fixed sparsity patterns [Child et al., 2019, Wu et al., 2019]. Our

Adaptively Sparse Transformer can dynamically select a sparsity pattern that finds rel-

evant words regardless of their position (e.g., Figure 4.9). Moreover, the two strategies

could be combined. In a concurrent line of research, Sukhbaatar et al. [2019] propose an

adaptive attention span for transformer language models. While their work has each head

learn a different contiguous span of context tokens to attend to, our work finds different

sparsity patterns in the same span. Interestingly, some of their findings mirror ours — we

found that attention heads in the last layers tend to be denser on average when compared

to the ones in the first layers, while their work has found that lower layers tend to have a

shorter attention span than higher layers.

Transformer interpretability. The original transformer paper [Vaswani et al., 2017]

shows attention visualizations, from which some speculation can be made on the roles of

the several attention heads. Mareček and Rosa [2018] study the syntactic abilities of the

transformer self-attention, while Raganato and Tiedemann [2018] extract dependency

relations from the attention weights. Tenney et al. [2019] find that the self-attentions in

BERT [Devlin et al., 2019] follow a sequence of processes that resembles a classical NLP

53

4. Adaptively Sparse Transformers

pipeline. Regarding redundancy of heads, Voita et al. [2019] develop a method that is

able to prune heads of the multi-head attention module and make an empirical study of

the role that each head has in self-attention (positional, syntactic and rare words). Li et al.

[2018] also aim to reduce head redundancy by adding a regularization term to the loss

that maximizes head disagreement and obtain improved results. While not considering

transformer attentions, Jain and Wallace [2019] show that traditional attention mecha-

nisms do not necessarily improve interpretability since softmax attention is vulnerable to

an adversarial attack leading to wildly different model predictions for the same attention

weights. Sparse attention may mitigate these issues; however, our work focuses mostly

on a more mechanical aspect of interpretation by analyzing head behavior, rather than

on explanations for predictions.

4.3 Adaptively Sparse Transformers

We now propose a novel transformer architecture wherein we simply replace softmax

with 𝛼-entmax, described in §2.3.2, in the attention heads. Concretely, we replace the

row normalization 𝝅 in Equation 2.6 by

𝝅 (Z)i j = 𝛼-entmax(zi) j .

This change leads to sparse attention weights, as long as 𝛼 > 1; in particular, 𝛼 = 1.5 is

a sensible starting point [Peters et al., 2019].

Different 𝜶 per head. Unlike LSTM-based seq2seq models, where 𝛼 can be more eas-

ily tuned by grid search, in a transformer, there are many attention heads in multiple

layers. Crucial to the power of such models, the different heads capture different linguis-

tic phenomena, some of them isolating important words, others spreading out attention

across phrases [Vaswani et al., 2017, Figure 5]. This motivates using different, adaptive 𝛼

values for each attention head, such that some heads may learn to be sparser, and others

54

4.3 Adaptively Sparse Transformers

may become closer to softmax. We propose doing so by treating the 𝛼 values as neural

network parameters, optimized via stochastic gradients along with the other weights.

Derivatives w.r.t. 𝜶. In order to optimize 𝛼 automatically via gradient methods, we

must compute the Jacobian of the entmax output w.r.t. 𝛼. Since entmax is defined

through an optimization problem, this is non-trivial and cannot be simply handled

through automatic differentiation; it falls within the domain of argmin differentiation, an

active research topic in optimization [Gould et al., 2016, Amos and Kolter, 2017].

One of our key contributions is the derivation of a closed-form expression for this

Jacobian. The next proposition provides such an expression, enabling entmax layers with

adaptive 𝛼. To the best of our knowledge, ours is the first neural network module that

can automatically, and continuously vary in shape away from softmax and toward sparse

mappings like sparsemax.

Proposition 1

Let p★ B 𝛼-entmax(z) be the solution of Equation 2.10,

𝛼-entmax(z) B argmax
p∈△K−1

p⊤z + Ht𝛼 (p).

Denote the distribution p̃i B (p★i)
2−𝛼/∑ j (p★j)

2−𝛼 and let hi B −p★i log p
★
i . The i th com-

ponent of the Jacobian g B 𝜕 𝛼-entmax(z)
𝜕𝛼

is

gi =

p★i −p̃i
(𝛼−1)2 +

hi−p̃i
∑
j h j

𝛼−1 , 𝛼 > 1,

hi log p★i −p
★
i
∑
j h j log p★j

2 , 𝛼 = 1.

(4.1)

The proof uses implicit function differentiation and is given in Appendix A.

Equation 4.1 provides the needed piece that was missing for training adaptively sparse

transformers. In the following section, we evaluate this strategy on neural machine trans-

55

4. Adaptively Sparse Transformers

lation and analyze the behavior of the learned attention heads.

4.4 Experiments

We apply our adaptively sparse transformers on four MT tasks. For comparison, a natural

baseline is the standard transformer architecture using the softmax transform in its multi-

head attention mechanisms. We consider two other model variants in our experiments

that make use of different normalizing transformations:

• 1.5-entmax: a transformer with sparse entmax attention with fixed 𝛼 = 1.5 for

all heads. This is a novel model since 1.5-entmax had only been used on RNN-

based NMT models [Peters et al., 2019], but never in transformers, where attention

modules are not just one single component of the model but rather an integral part

of all of the model components.

• 𝜶-entmax: an adaptive transformer with sparse entmax attention with a different,

learned 𝛼 ti , j for each head.

The adaptive model has an additional scalar parameter per attention head for each of

the three attention mechanisms (encoder self-attention, context attention, and decoder

self-attention), i.e.,

{
ati , j ∈ ℝ : i ∈ {1, . . . , L}, j ∈ {1, . . . , H }, t ∈ {enc, ctx, dec}

}
,

where L is the number of transformer layers, H is the number of attention heads in that

layer, and we set 𝛼 ti , j = 1 + sigmoid(ati , j) ∈]1, 2[. All or some of the 𝛼 values can be tied

if desired, but we keep them independent for analysis purposes.

Datasets. Our models were trained on 4 machine translation datasets of different num-

ber of training instances (sentence pairs):

56

4.5 Analysis

• IWSLT 2017 German→English [de�en, Cettolo et al., 2017]: 200K.

• KFTT Japanese→English [ja�en, Neubig, 2011]: 300K.

• WMT 2016 Romanian→English [ro�en, Bojar et al., 2016]: 600K.

• WMT 2014 English→German [en�de, Bojar et al., 2014]: 4.5M.

All of these datasets were preprocessed with byte-pair encoding [BPE; Sennrich et al.,

2016], using joint segmentations of 32K merge operations.

Training. We follow the dimensions of the Transformer-Base model of Vaswani et al.

[2017]: The number of layers is L = 6 and number of heads is H = 8 in the encoder

self-attention, the context attention, and the decoder self-attention. We use a mini-batch

size of 8192 tokens and warm up the learning rate linearly until 20k steps, after which

it decays according to an inverse square root schedule. All models were trained until the

convergence of validation accuracy and evaluation was done at each 10K steps for ro�en

and en�de and at each 5K steps for de�en and ja�en. The end-to-end computational

overhead of our methods, when compared to standard softmax, is relatively small; in

training tokens per second, the models using 𝛼-entmax and 1.5-entmax are, respectively,

75% and 90% the speed of the softmax model.

Results. We report test set tokenized BLEU [Papineni et al., 2002] results in Table 4.1.

We can see that replacing softmax by entmax does not hurt performance in any of the

datasets; indeed, sparse attention transformers tend to have slightly higher BLEU, but

their sparsity leads to a better potential for analysis. In the next section, we make use of

this potential by exploring the learned internal mechanics of the self-attention heads.

4.5 Analysis

We conduct high-level analysis of the learned attention heads of the sparse adaptive trans-

former model (𝛼-entmax) trained on the 4 datasets. We then present, for the higher-

57

4. Adaptively Sparse Transformers

activation de�en ja�en ro�en en�de

softmax 29.79 21.57 32.70 26.02
1.5-entmax 29.83 22.13 33.10 25.89
𝛼-entmax 29.90 21.74 32.89 26.93

Table 4.1: Machine translation tokenized BLEU test results on IWSLT 2017 de�en,
KFTT ja�en, WMT 2016 ro�en and WMT 2014 en�de, respectively.

resource dataset WMT 2014 English→ German, a more detailed analysis of the atten-

tion at the individual head behavior. Moreover, we make a qualitative analysis of the

interpretability capabilities of our models.

4.5.1 High-Level Statistics

What kind of 𝜶 values are learned? Figure 4.2 shows the learning trajectories of the

𝛼 parameters of a selected subset of heads. We generally observe a tendency for the

randomly-initialized 𝛼 parameters to decrease initially, suggesting that softmax-like be-

havior may be preferable while the model is still uncertain. After around one thousand

steps, some heads change direction and become sparser, perhaps as they become more

confident and specialized. This shows that the initialization of 𝛼 does not predetermine

its sparsity level or the role the head will have throughout. In particular, head 8 in the

encoder self-attention layer 2 first drops to around 𝛼 = 1.3 before becoming one of the

sparsest heads, with 𝛼 ≈ 2.

The overall distribution of 𝛼 values at convergence can be seen in Figure 4.3. We

observe that the encoder self-attention blocks learn to concentrate the 𝛼 values in two

modes: a very sparse one around 𝛼 → 2, and a dense one between softmax and 1.5-

entmax. However, the decoder self and context attention only learn to distribute these

parameters in a single mode. We show next that this is reflected in the average density of

attention weight vectors as well.

58

4.5 Analysis

0 2000 4000 6000 8000 10000 12000
training steps

1.0

1.2

1.4

1.6

1.8

decoder, layer 1, head 8
encoder, layer 1, head 3
encoder, layer 1, head 4
encoder, layer 2, head 8
encoder, layer 6, head 2

Figure 4.2: Trajectories of 𝛼 values for a subset of the heads during training on en�de.
Initialized at random, most heads become denser in the beginning, before converging.
This suggests that dense attention may be more beneficial while the network is still un-
certain, being replaced by sparse attention afterward.

Attention weight density when translating. For any 𝛼 > 1, it would still be possible for

the weight matrices in Equation 2.7 to learn re-scalings so as to make attention sparser or

denser. To visualize the impact of adaptive 𝛼 values, we compare the empirical attention

weight density (the average number of tokens receiving non-zero attention) within each

module, against sparse transformers with fixed 𝛼 = 1.5.

Figure 4.4 shows that, with fixed 𝛼 = 1.5, heads tend to be sparse and similarly dis-

tributed in all three attention modules. With learned 𝛼, there are two notable changes: (i)

a prominent mode corresponding to fully dense probabilities, showing that our models

learn to combine sparse and dense attention, and (ii) a distinction between the encoder

self-attention — whose background distribution tends toward extreme sparsity — and the

other two modules, which exhibit more uniform background distributions. This suggests

59

4. Adaptively Sparse Transformers

0

10

20

30

E
nc

od
er

Se
lf-

At
te

nt
io

n

0

10

20

30

C
on

te
xt

At
te

nt
io

n

1.0 1.2 1.4 1.6 1.8 2.0
0

10

20

30

D
ec

od
er

Se
lf-

At
te

nt
io

n

(a) WMT 2016 ro�en.

0

10

20

30

E
nc

od
er

Se
lf-

At
te

nt
io

n

0

10

20

30

C
on

te
xt

At
te

nt
io

n

1.0 1.2 1.4 1.6 1.8 2.0
0

10

20

30
D

ec
od

er
Se

lf-
At

te
nt

io
n

(b) KFTT ja�en.

0

10

20

E
nc

od
er

Se
lf-

At
te

nt
io

n

0

10

20

C
on

te
xt

At
te

nt
io

n

1.0 1.2 1.4 1.6 1.8 2.0
0

10

20

D
ec

od
er

Se
lf-

At
te

nt
io

n

(c) WMT 2014 en�de.

0

10

20

30

E
nc

od
er

Se
lf-

At
te

nt
io

n

0

10

20

30

C
on

te
xt

At
te

nt
io

n

1.0 1.2 1.4 1.6 1.8 2.0
0

10

20

30

D
ec

od
er

Se
lf-

At
te

nt
io

n

(d) IWSLT 2017 de�en.

Figure 4.3: Distribution of learned 𝛼 values per attention block. While the encoder self-
attention has a bimodal distribution of values of 𝛼, the decoder self-attention and context
attention have a single mode.

60

4.5 Analysis

0.0 0.5 1.0
0

10k

30k

50k
E

nc
od

er
Se

lf-
At

te
nt

io
n

1.5-entmax

0.0 0.5 1.0

-entmax

0.0 0.5 1.0
0

10k

30k

50k

C
on

te
xt

At
te

nt
io

n

0.0 0.5 1.0

0.0 0.5 1.0
density

0
10k

30k

50k

D
ec

od
er

Se
lf-

At
te

nt
io

n

0.0 0.5 1.0
density

(a) WMT 2016 ro�en.

0.0 0.5 1.0
0

10k

30k

50k

E
nc

od
er

Se
lf-

At
te

nt
io

n

1.5-entmax

0.0 0.5 1.0

-entmax

0.0 0.5 1.0
0

10k

30k

50k

C
on

te
xt

At
te

nt
io

n

0.0 0.5 1.0

0.0 0.5 1.0
density

0
10k

30k

50k

D
ec

od
er

Se
lf-

At
te

nt
io

n

0.0 0.5 1.0
density

(b) KFTT ja�en.

0.0 0.5 1.0
0

10k

30k

50k

E
nc

od
er

Se
lf-

At
te

nt
io

n

1.5-entmax

0.0 0.5 1.0

-entmax

0.0 0.5 1.0
0

10k

30k

50k

C
on

te
xt

At
te

nt
io

n

0.0 0.5 1.0

0.0 0.5 1.0
density

0
10k

30k

50k

D
ec

od
er

Se
lf-

At
te

nt
io

n

0.0 0.5 1.0
density

(c) WMT 2014 en�de.

0.0 0.5 1.0
0

50k

100k

150k

E
nc

od
er

Se
lf-

At
te

nt
io

n

1.5-entmax

0.0 0.5 1.0

-entmax

0.0 0.5 1.0
0

50k

100k

150k

C
on

te
xt

At
te

nt
io

n

0.0 0.5 1.0

0.0 0.5 1.0
density

0

50k

100k

150k

D
ec

od
er

Se
lf-

At
te

nt
io

n

0.0 0.5 1.0
density

(d) IWSLT 2017 de�en.

Figure 4.4: Distribution of attention densities (average number of tokens receiving non-
zero attention weight) for all attention heads and all validation sentences. When com-
pared to 1.5-entmax, 𝛼-entmax distributes the sparsity more uniformly, with a clear mode
at fully dense attentions, corresponding to the heads with low 𝛼. In the softmax case, this
distribution would lead to a single bar with density 1.

61

4. Adaptively Sparse Transformers

that perhaps entirely sparse transformers are suboptimal.

The fact that the decoder seems to prefer denser attention distributions might be

attributed to it being auto-regressive, only having access to past tokens and not the full

sentence. We speculate that it might lose too much information if it assigned weights of

zero to too many tokens in the self-attention, since there are fewer tokens to attend to in

the first place.

Teasing this down into separate layers, Figure 4.5 shows the average (sorted) density

of each head for each layer. We observe that 𝛼-entmax is able to learn different sparsity

patterns at each layer, leading to more variation in individual head behavior, to clearly-

identified dense and sparse heads and overall different tendencies compared to the fixed

case of 𝛼 = 1.5.

Head diversity. To measure the overall disagreement between heads, as a measure of

head diversity, we use the following generalization of the Jensen-Shannon divergence:

JS = ℍ
©« 1
H

H∑︁
j=1

p j
ª®¬ − 1

H

H∑︁
j=1

ℍ(p j)

where p j is the vector of attention weights assigned by the head j to each word in the

sequence, and ℍ is the Shannon entropy, base-adjusted based on the dimension of p

such that JS ≤ 1. We average this measure over the entire validation set. The higher this

metric is, the more the heads are taking different roles in the model.

Figure 4.6 shows that both sparse transformer variants show more diversity than the

traditional softmax one. Interestingly, diversity seems to often peak in the middle lay-

ers of the encoder self-attention and context attention, while this is not the case for the

decoder self-attention.

62

4.5 Analysis

0.0

0.5

1.0

E
nc

od
er

Se
lf-

At
te

nt
io

n
fixed = 1.5 learned

0.0

0.5

1.0

C
on

te
xt

At
te

nt
io

n

1 2 3 4 5 6
Layers

0.0

0.5

1.0

D
ec

od
er

Se
lf-

At
te

nt
io

n

1 2 3 4 5 6
Layers

(a) WMT 2016 ro�en.

0.0

0.5

1.0

E
nc

od
er

Se
lf-

At
te

nt
io

n

fixed = 1.5 learned

0.0

0.5

1.0

C
on

te
xt

At
te

nt
io

n

1 2 3 4 5 6
Layers

0.0

0.5

1.0

D
ec

od
er

Se
lf-

At
te

nt
io

n

1 2 3 4 5 6
Layers

(b) KFTT ja�en.

0.0

0.5

1.0

E
nc

od
er

Se
lf-

At
te

nt
io

n

fixed = 1.5 learned

0.0

0.5

1.0

C
on

te
xt

At
te

nt
io

n

1 2 3 4 5 6
Layers

0.0

0.5

1.0

D
ec

od
er

Se
lf-

At
te

nt
io

n

1 2 3 4 5 6
Layers

(c) WMT 2014 en�de.

0.0

0.5

1.0

E
nc

od
er

Se
lf-

At
te

nt
io

n

fixed = 1.5 learned

0.0

0.5

1.0

C
on

te
xt

At
te

nt
io

n

1 2 3 4 5 6
Layers

0.0

0.5

1.0

D
ec

od
er

Se
lf-

At
te

nt
io

n

1 2 3 4 5 6
Layers

(d) IWSLT 2017 de�en.

Figure 4.5: Head density per layer for fixed and learned 𝛼. Each line corresponds to
an attention head; lower values mean that that attention head is sparser. Learned 𝛼 has
higher variance.

63

4. Adaptively Sparse Transformers

0.4

0.5

E
nc

od
er

Se
lf-

At
te

nt
io

n

softmax
1.5-entmax

-entmax

0.3

0.4

0.5

C
on

te
xt

At
te

nt
io

n

1 2 3 4 5 6
Layers

0.3

0.4

D
ec

od
er

Se
lf-

At
te

nt
io

n

(a) WMT 2016 ro�en.

0.4

0.5

E
nc

od
er

Se
lf-

At
te

nt
io

n

softmax
1.5-entmax

-entmax

0.2

0.3

0.4

0.5

C
on

te
xt

At
te

nt
io

n

1 2 3 4 5 6
Layers

0.25

0.30

0.35

0.40

D
ec

od
er

Se
lf-

At
te

nt
io

n

(b) KFTT ja�en.

0.4

0.5

E
nc

od
er

Se
lf-

At
te

nt
io

n softmax
1.5-entmax

-entmax

0.20

0.25

0.30

0.35

C
on

te
xt

At
te

nt
io

n

1 2 3 4 5 6
Layers

0.25

0.30

0.35

D
ec

od
er

Se
lf-

At
te

nt
io

n

(c) WMT 2014 en�de.

0.4

0.5

E
nc

od
er

Se
lf-

At
te

nt
io

n

softmax
1.5-entmax

-entmax

0.3

0.4

C
on

te
xt

At
te

nt
io

n

1 2 3 4 5 6
Layers

0.25

0.30

0.35

D
ec

od
er

Se
lf-

At
te

nt
io

n

(d) IWSLT 2017 de�en.

Figure 4.6: Jensen-Shannon Divergence between heads at each layer. Measures the
disagreement between heads: the higher the value, the more the heads are disagreeing
with each other in terms of where to attend. Models using sparse entmax have more
diverse attention than the softmax baseline.

64

4.5 Analysis

wewere
n

't faraw
ay
las

t
sea

son
.

softmax

we
weren

't
far

away
last

season
.

wewere
n

't faraw
ay
las

t
sea

son
.

1.5-entmax

wewere
n

't faraw
ay
las

t
sea

son
.

-entmax

Figure 4.7: Self-attention from the most confidently previous-position head in each
model. The learned parameter in the 𝛼-entmax model is 𝛼 = 1.91. Quantitatively more
confident, visual inspection confirms that the adaptive head behaves more consistently.

4.5.2 Identifying Head Specializations

Previous work pointed out some specific roles played by different heads in the softmax

transformer model [Voita et al., 2018, Tang et al., 2018, Voita et al., 2019]. Identifying

the specialization of a head can be done by observing the type of tokens or sequences that

the head often assigns most of its attention weight; this is facilitated by sparsity.

Positional heads. One particular type of head, as noted by Voita et al. [2019], is the

positional head. These heads tend to focus their attention on either the previous or next

token in the sequence, thus obtaining representations of the neighborhood of the current

time step. In Figure 4.7, we show attention plots for such heads, found for each of the

studied models. The sparsity of our models allows these heads to be more confident in

their representations, by assigning the whole probability weight to a single token in the

sequence. Concretely, we may measure a positional head’s confidence as the average

attention weight assigned to the previous token. The softmax model has three heads for

position −1, with median confidence of 93.5%. The 1.5-entmax model also has three

heads for this position, with median confidence of 94.4%. The adaptive model has four

heads, with median confidences of 95.9%, the lowest-confidence head being dense with

𝛼 = 1.18, while the highest-confidence head is sparse (𝛼 = 1.91).

65

4. Adaptively Sparse Transformers

rul
es
forblo

~
wingupba

l~
lo~on

s
, forba

na
na

s

an
d
a cir

~
cus

rules
for

blo~
wing

up
bal~
lo~
ons

,
for

bananas
and

a
cir~
cus

on
e

- tw
o

- thr
ee

- fou
r

.
one

-
two

-
three

-
four

.

areyo
u
no

t
con

fir~
mingthi

s
withwha

t
yo

u
ha

ve
sta

ted
?

are
you
not

confir~
ming

this
with

what
you

have
stated

?

thi
s

cou
ld
com

e
ba

ck
to ha

~
un

t
the

m
.

this
could
come
back

to
ha~
unt

them
.

Figure 4.8: BPE-merging head (𝛼 = 1.91) discovered in the 𝛼-entmax model. Found in
the first encoder layer, this head learns to discover some subword units and combine their
information, leaving most words intact. It places 99.09% of its probability mass within
the same BPE cluster as the current token: more than any head in any other model.

66

4.5 Analysis

ho
wev

er

, wha
t

is Ar~man
~

i Po
lo
?

softmax

however
,

what
is

Ar~
man~

i
Polo

?

ho
wev

er

, wha
t

is Ar~man
~

i Po
lo
?

1.5-entmax

ho
wev

er

, wha
t

is Ar~man
~

i Po
lo
?

-entmax

yo
u
won

de
r

wha
t
morepe

op
le

ex
pe

ct

.

softmax

you
wonder

what
more

people
expect

.

yo
u
won

de
r

wha
t
morepe

op
le

ex
pe

ct

.

1.5-entmax

yo
u
won

de
r

wha
t
morepe

op
le

ex
pe

ct

.

-entmax

Figure 4.9: Interrogation-detecting heads in the three models. The top sentence is inter-
rogative while the bottom one is declarative but includes the interrogative word “what”.
In the top example, these interrogation heads assign a high probability to the question mark
in the time step of the interrogative word (with ≥ 97.0% probability), while in the bottom
example since there is no question mark, the same head does not assign a high probability
to the last token in the sentence during the interrogative word time step. Surprisingly,
this head prefers a low 𝛼 = 1.05, as can be seen from the dense weights. This allows the
head to identify the noun phrase “Armani Polo" better.

67

4. Adaptively Sparse Transformers

he
re
, thi

s
lay

er
is thi

n
.

here
,

this
layer

is
thin

.

whic
h

sym
pto

ms

ind
ica

te

a sex
~
ua

lly
tra

nsm
itte

d

dis
ea

se

?
which

symptoms
indicate

a
sex~
ually

transmitted
disease

?

Figure 4.10: Example of two sentences of similar length where the same head (𝛼 = 1.33)
exhibits different sparsity. The longer phrase in the example on the right “a sexually
transmitted disease” is handled with higher confidence, leading to more sparsity.

For position +1, the models each dedicate one head, with confidence around 95%,

slightly higher for entmax. The adaptive model sets 𝛼 = 1.96 for this head.

BPE-merging head. Due to the sparsity of our models, we are able to identify other

head specializations, easily identifying which heads should be further analyzed. In Fig-

ure 4.8 we show one such head where the 𝛼 value is particularly high (in the encoder, layer

1, head 4 depicted in Figure 4.2). We found that this head most often looks at the current

time step with high confidence, making it a positional head with offset 0. However, this

head often spreads weight sparsely over 2-3 neighboring tokens, when the tokens are part

of the same BPE cluster2 or hyphenated words. As this head is in the first layer, it pro-

vides a useful service to the higher layers by combining information evenly within some

BPE clusters.

For each BPE cluster or cluster of hyphenated words, we computed a score between

0 and 1 that corresponds to the maximum attention mass assigned by any token to the

rest of the tokens inside the cluster in order to quantify the BPE-merging capabilities of

2BPE-segmented words are denoted by ∼ in the Figures.

68

4.6 Subsequent Work

these heads.3 There are not any attention heads in the softmax model that are able to

obtain a score over 80%, while for 1.5-entmax and 𝛼-entmax there are two heads in each

(83.3% and 85.6% for 1.5-entmax and 88.5% and 89.8% for 𝛼-entmax).

Interrogation head. On the other hand, in Figure 4.9 we show a head for which our

adaptively sparse model chose an 𝛼 close to 1, making it closer to softmax (also shown in

encoder, layer 1, head 3 depicted in Figure 4.2). We observe that this head assigns a high

probability to question marks at the end of the sentence in time steps where the current

token is interrogative, thus making it an interrogation-detecting head. We also observe

this type of heads in the other models, which we also depict in Figure 4.9. The average

attention weight placed on the question mark when the current token is an interrogative

word is 98.5% for softmax, 97.0% for 1.5-entmax, and 99.5% for 𝛼-entmax.

Furthermore, we can examine sentences where some tendentially sparse heads be-

come less so, thus identifying sources of ambiguity where the head is less confident in its

prediction. An example is shown in Figure 4.10 where sparsity in the same head differs

for sentences of similar length.

4.6 Subsequent Work

Correia et al. [2019] is part of an early line of work on transformers that sparked interest

in making this model more efficient [Daras et al., 2020, Li et al., 2020, Merrill et al.,

2021, Roy et al., 2021, inter alia], using sparsity to allow for transformers to use longer

contexts more effectively [Jiang et al., 2020, Qiu et al., 2020, Sukhbaatar et al., 2021,

inter alia], and being able to understand transformers better [You et al., 2020, Rogers

et al., 2020, Pande et al., 2021, inter alia]. This transformer variant and 𝛼-entmax have

also proved useful in medical applications [Guo et al., 2020, Yun et al., 2021].

Particularly connected to the present work, Treviso et al. [2022] tackles the quadratic

complexity that remains in our approach, as we had focused more on the interpretability

3If the cluster has size 1, the score is the weight the token assigns to itself.

69

4. Adaptively Sparse Transformers

benefits of sparsity and not on its potential computational benefits. Treviso et al. [2022]

propose Sparsefinder, a method that predicts in advance the sparsity pattern of 𝛼-entmax,

by projecting queries and keys into a lower-dimensional space, turning our approach into

a computationally efficient alternative to the original transformer.

Still on the topic of computational efficiency, Ji et al. [2021] focuses on inducing spar-

sity on the attention heads only at inference time to avoid unnecessary training of new

models and wasting of computational resources. In order to achieve this, they propose

a pruning and quantization technique that does not lead to decreased performance. To

push the sparsity to the limit, Xu et al. [2021] propose a hard retrieval approach that is

able to make each attention mechanism attend to only a single token. This approach also

leads to similar performance to the original transformer but ends up having a 1.43 times

faster decoding performance in translation tasks.

Regarding the concept of sparse transformers, Yun et al. [2020] unify several works

that sparsify transformers in a single framework. This unified framework is constructed

through conditions based on the sparsity pattern and the probability map. Once such

conditions are satisfied, the authors prove that some sparse transformers (of which our ap-

proach is included) are universal approximators of any continuous sequence-to-sequence

function. Furthermore, they show that when these sparse transformers have only O(n)

connections (which is in contrast to the constant O(n2) connections of dense transform-

ers), they still hold the same universal approximation properties.

Zhang et al. [2021a] propose another approach to induce sparsity in each attention

head of the transformer. In this work, instead of replacing the softmax with entmax,

the authors replace it with the ReLU = max(0, x) activation. When compared to our

approach, rectified linear attention (ReLA) obtains faster training and decoding time

while achieving close performance in translation tasks. In their analysis, they followed

our methodology and found that their method had higher JS divergence than our own,

suggesting that attention heads using ReLA tend to be more diverse in where they attend

at each layer. Furthermore, ReLA is also able to assign null attention for some queries,

70

4.7 Final Remarks and Chapter Summary

that is, to effectively deactivate an attention head for a specific query, as it is able to assign

zero values to all tokens. Their analysis shows that the rate at which null attention hap-

pens increases in deeper layers, which correlates with our own analysis that deeper layers

contain less information. Moreover, Zhang et al. [2021b] achieves sparsity by pruning

entire sections of the encoder outputs in the cross-attention of the decoder. This leads to

a significant speed-up during decoding. It drops whole sections from the source encod-

ings to speed up decoding, and the authors find that the tokens that end up being dropped

are often uninformative, while the retained ones are relatively rare.

On the topic of interpretability and understanding the inner workings of transformers,

inspired by our analysis (§4.5.2) along with other works [e.g., Voita et al., 2019] that find

that encoder self-attention heads learn fixed patterns, Raganato et al. [2020] fixes the

attention pattern of all but one head in each layer, letting only a single head in each

layer learn its attention. Those fixed patterns include the positional heads that focus on

the current, previous, and next token and the BPE-merging head that we found. The

parameter footprint of the model drastically decreases thanks to these simplifications,

and the authors show empirically that translation quality does not drop significantly and

even that, in low-resource scenarios, this approach improves translation performance.

4.7 Final Remarks and Chapter Summary

In the present chapter, we contributed a novel strategy for learnable sparse attention,

and, in particular, for adaptively sparse transformers. We presented the first empirical

analysis of transformers with sparse attention mappings (i.e., entmax), showing potential

in both translation accuracy as well as in the model interpretability.

In particular, we analyzed how the attention heads in the adaptively sparse trans-

former can specialize more and with higher confidence. Our adaptivity strategy re-

lies only on gradient-based optimization, side-stepping costly per-head hyperparameter

searches. Given the impact of our work, we believe that similar approaches will continue

71

4. Adaptively Sparse Transformers

to increase in the future, improving neural models’ efficiency and transparency.

72

5
Efficient Marginalization of

Discrete and Structured Latent
Variables via Sparsity

Contents
5.1 Motivation . 75
5.2 Previous Work . 76
5.3 Efficient Marginalization via Sparsity 78
5.4 Structured Latent Variables . 79
5.5 Experimental Analysis . 80
5.6 Subsequent Work . 95
5.7 Final Remarks and Chapter Summary 96

73

5. Efficient Marginalization of Discrete and Structured Latent Variables

74

5.1 Motivation

In this chapter, we focus on the objective of making neural models more compact. We

will propose a novel approach to train discrete and structured latent variable models that

achieves an exact gradient unlike previous strategies in this field. Latent discrete and

structured variables are of particular interest for the compactness of neural models since

they can constrain the model and provide inductive bias. This family of latent variable

models can also be easily semi-supervised, which can further increase the inductive bias

and thus the compactness of the model.

The exactness of the gradient of our approach is achieved through explicitly doing

the marginalization of Equation 2.17. As we shall see, this computation turns out to

be efficient thanks to parameterizing the distribution over categories or structures with

sparsity. Therefore, while in the previous chapter we have used sparsity for increased

transparency, we will now use sparsity for increased efficiency. Albeit in a different way

than in the previous chapter, this sparsity will too be learned over time, increasing as the

training progresses due to the model being more confident on latent variable assignments.

This chapter is based on Correia, Niculae, Aziz, and Martins [2020].

5.1 Motivation

As discussed in §2.4.1, training with discrete latent variables can become challenging, due

to the need to compute a gradient of a large sum over all possible latent variable assign-

ments, with each term itself being potentially expensive (Equation 2.17). This challenge is

typically tackled by estimating the gradient with Monte Carlo methods [MC; Mohamed

et al., 2019], which rely on sampling estimates. The two most common strategies for MC

gradient estimation are the score function estimator [SFE; Rubinstein, 1976, Paisley et al.,

2012], which suffers from high variance, or surrogate methods that rely on the continu-

ous relaxations, like straight-through [Bengio et al., 2013] or Gumbel-Softmax [Maddi-

son et al., 2017, Jang et al., 2017], which potentially reduce variance but introduce bias

and modeling assumptions.

75

5. Efficient Marginalization of Discrete and Structured Latent Variables

In this work, we take a step back and ask: Can we avoid sampling entirely, and instead,

deterministically evaluate the sum in Equation 2.17 with less computation? To answer af-

firmatively, we propose an alternative method to train these models by parameterizing the

discrete distribution with sparse mappings — sparsemax [Martins and Astudillo, 2016]

and two structured counterparts, SparseMAP [Niculae et al., 2018a] and a novel map-

ping top-k sparsemax. Sparsity implies that some assignments of the latent variable are

entirely ruled out. This leads to the corresponding terms in the sum evaluating trivially

to zero, allowing us to disregard potentially expensive computations.

Contributions. We introduce a general strategy for learning discrete latent variable

models that hinges on learning a sparse distribution over the possible assignments. In

the unstructured categorical case, our strategy relies on the sparsemax activation function,

presented in §5.3, while in the structured case we propose two strategies, SparseMAP and

top-k sparsemax, presented in §5.4. Unlike existing approaches, our strategies involve

neither MC estimation nor any relaxation of the discrete latent variable to the continu-

ous space. We demonstrate our strategy in three different applications: a semi-supervised

generative model, an emergent communication game, and a bit-vector variational auto-

encoder. We provide a thorough analysis and comparison to MC methods, and — when

feasible — to exact marginalization. Our approach is consistently a top performer, com-

bining the accuracy and robustness of exact marginalization with the efficiency of single-

sample estimators.

5.2 Previous Work

Differentiable sparse mappings. There has been recent interest in applying sparse

mappings (see §2.3) of discrete distributions in deep discriminative models [Martins and

Astudillo, 2016, Niculae et al., 2018a, Niculae and Blondel, 2017, Peters et al., 2019, Nic-

ulae et al., 2018b], attention mechanisms [Malaviya et al., 2018, Shao et al., 2019, Maruf

et al., 2019, Correia et al., 2019], and in topic models [Cao, 2019]. Our work focuses on

76

5.2 Previous Work

the parameterization of distributions over latent variables with sparse mappings, on the

computational advantage to be gained by sparsity, and on the contrast between our novel

training method and common sampling-based methods.

Reducing sampling noise. The sampling procedure found in SFE is a great source

of variance in models that use it. To reduce this variance, many works have proposed

baselines [Williams, 1992, Gu et al., 2016, Wang et al., 2013]. VIMCO [Mnih and

Rezende, 2016] is a multi-sample estimator which exploits variance reduction via input-

dependent baselines as well as a lower bound on marginal likelihood which is tighter than

the ELBO [Burda et al., 2016]. The number of samples in VIMCO is a hyperparameter

that stays fixed throughout training. Our methods, in contrast, may take several decoder

calls initially, but that number automatically decreases over time as training progresses.

While baselines must be independent of the sample for which we assess the score func-

tion, exploiting correlation in the downstream losses of dependent samples holds poten-

tial for further variance reduction. These are known as control variates [Greensmith et al.,

2004]. REBAR [Tucker et al., 2017] exploits a continuous relaxation to obtain a depen-

dent sample and uses the downstream loss assessed at the relaxed sample to define a con-

trol variate. RELAX [Grathwohl et al., 2018], instead, learns to predict the downstream

loss of the relaxed sample with an auxiliary network. In contrast, sparse marginalization

works for any factorization where a primitive for 1-best (or k-best) enumeration is avail-

able and takes no additional parameters nor additional optimization objectives. Another

line of work approximates argmax gradients by perturbed finite differences Lorberbom

et al. [2019], Vlastelica et al. [2020]; this requires the same computation primitive as

our approach but is always biased. ARM [Yin and Zhou, 2019] is a control variate based

on antithetic samples [Owen, 2013]: it does not require relaxation nor additional pa-

rameters, but it only applies to factorial Bernoulli distributions. Closest to our work are

variance reduction techniques that rely on partial marginalization, typically of the top-k

assignments to the latent variable [Liu et al., 2019, Kool et al., 2020]. These meth-

ods show improved performance and variance reduction, but require rejection sampling,

77

5. Efficient Marginalization of Discrete and Structured Latent Variables

which can be challenging in structured problems.

5.3 Efficient Marginalization via Sparsity

As discussed in §2.4, the challenge of computing the exact expectation in Equation 2.17

is linked to the need to compute a sum with a large number of terms. This holds when

the probability distribution over latent assignments is dense (i.e., every assignment z ∈ Z

has non-zero probability), which is indeed the case for most parameterizations of discrete

distributions. Our proposed methods hinge on sparsifying this sum.

Take the example where Z= {1, . . . , K}, with a neural network predicting from x to

a K-dimensional vector of real-valued scores s = g (x; 𝜃), such that sz is the score of z.1

The traditional way to obtain the vector 𝝃 parameterizing 𝜋 (z |x; 𝜃) is with the softmax

transform (i.e., 𝝃 = softmax(s)). Since this gives 𝜋 (z |x; 𝜃) ∝ exp(sz), the expectation in

Equation 2.17 depends on ℓ (x , z; 𝜃) for every possible z.

We rethink this standard parameterization, proposing a sparse mapping from scores

to the simplex. In particular, we substitute the softmax activation function by sparse-

max [Martins and Astudillo, 2016], described in §2.3.

Our main insight is that with a sparse parameterization of 𝜋, we can compute the

expectation in Equation 2.17 evaluating ℓ (x , z; 𝜃) only for assignments z ∈ Z̄ B {z :

𝜋 (z |x , 𝜃) > 0}. This leads to a powerful alternative to MC estimation, which requires

fewer than |Z| evaluations of ℓ , and which strategically — yet deterministically — selects

which assignments Z̄ to evaluate ℓ on. Empirically, our analysis in §5.5 reveals an adap-

tive behavior of this sparsity-inducing mechanism, performing more loss evaluations in

early iterations while the model is uncertain, and quickly reducing the number of evalu-

ations, especially for unambiguous data points. This is a notable property of our learning

strategy: In contrast, MC estimation cannot decide when an ambiguous data point may

require more sampling for accurate estimation; and directly evaluating Equation 2.17

1Not to be confused with “score function,” as in SFE, which refers to the gradient of the log-likelihood.

78

5.4 Structured Latent Variables

with the dense 𝝃 resulting from a softmax parameterization never reduces the number of

evaluations required, even for simple instances.

5.4 Structured Latent Variables

As discussed in §2.4.2, many interesting models can include latent variables that exist

in a set of combinatorial size. While it may be tempting to consider using sparsemax

to avoid the expensive sum in the exact expectation of Equation 2.17, this is prohibitive

too: solving the problem in Equation 2.8 still requires explicit manipulation of the large

vector s ∈ ℝ|Z|, and even if we could avoid this, in the worst case (s = 0) the resulting

sparsemax distribution would still have exponentially large support. Fortunately, we show

next that it is still possible to develop sparsification strategies to handle the combinatorial

explosion of Z in the structured case. We propose two different methods to obtain a

sparse distribution 𝝃 supported only over a bounded-size subset of Z: top-k sparsemax

(§5.4.1) and SparseMAP (§5.4.2).

5.4.1 Top-k Sparsemax

Recall that the sparsemax operator (Equation 2.8) is simply the Euclidean projection onto

the |Z|-dimensional probability simplex. While there is a propensity for sparsity, there

is no upper bound on the number of non-zeros of the resulting distribution. When Z

is large, one possibility is to add a cardinality constraint ∥𝝃 ∥0 ≤ k for some prescribed

k ∈ ℕ. The resulting problem becomes

sparsemaxk (s) B argmin
𝝃 ∈△ |Z|−1 , ∥𝝃 ∥0≤k

∥𝝃 − s∥22 , (5.1)

which is known as a sparse projection onto the simplex and has been studied in detail by

Kyrillidis et al. [2013] and used to smooth structured prediction losses [Pillutla et al.,

2018, Blondel et al., 2020]. Remarkably, while this is a non-convex problem, its solution

79

5. Efficient Marginalization of Discrete and Structured Latent Variables

𝝃★ can be written as a composition of two functions: a top-k operator topk : ℝ|Z| → ℝ|Z|,

which returns a vector identical to its input but where all the entries not among the k

largest ones are masked out (set to −∞), and the k-dimensional sparsemax operator.

Formally, sparsemaxk = sparsemax(topk (s)). Being a composition of operators, its

Jacobian becomes a product of matrices and hence simple to compute.2

To apply the top-k sparsemax to a large or combinatorial set Z, all we need is a prim-

itive to compute the top-k entries of s— this is available for many structured problems

(for example, sequential models via k-best dynamic programming) and, when Z is the

set of joint assignments of D discrete binary variables, it can be done with a cost O(kD).

After enumerating this set, we parameterize 𝜋 (z |x; 𝜃) by applying sparsemax to that

top-k, with a computational cost O(k). Note that this method is identical to sparsemax

whenever ∥ sparsemax(s)∥0 ≤ k: if during training the model learns to assign a sparse

distribution to the latent variable, we are effectively using a sparsemax parameterization

as presented in §5.3 with cheap computation. In fact, the solution of Equation 5.1 gives

us a certificate of optimality whenever ∥𝝃★∥0 < k.

5.4.2 SparseMAP

A second possibility to obtain efficient summation over a combinatorial space without im-

posing any constraints on ℓ (x , z; 𝜃) is to use SparseMAP [§2.3.3; Niculae et al., 2018a,b].

Due to the properties of SparseMAP, assessing the expectation in Equation 2.17 only re-

quires evaluating |Z̄| = O(D) terms.

5.5 Experimental Analysis

We next demonstrate the applicability of our proposed strategies by tackling three tasks: a

deep generative model with semi-supervision (§5.5.1), an emergent communication two-

2the Jacobian of topk is a diagonal matrix whose diagonal is a multi-hot vector indicating the top-k
elements of s

80

5.5 Experimental Analysis

player game over a discrete channel (§5.5.2), and a variational auto-encoder with latent

binary factors (§5.5.3).

We follow the experimental procedures described in [Liu et al., 2019] and [Lazaridou

et al., 2017] for §5.5.1 and §5.5.2, respectively. We describe the most relevant training

details and key differences in architectures when applicable. For other implementation

details that we do not mention here, we refer the reader to the works referenced above.

For all Gumbel baselines, we relax the sample into the continuous space but assume a

discrete distribution when computing the entropy of 𝜋 (z |x; 𝜃), as suggested as one im-

plementation option in Maddison et al. [2017]. Our code is publicly available3 and was

largely inspired by the structure and implementations found in EGG [Kharitonov et al.,

2019], having been built upon it.

5.5.1 Semi-Supervised Variational Auto-Encoder

We consider the semi-supervised Variational Auto-Encoder (VAE) of Kingma et al.

[2014], which models the joint probability

pXZH (z, h, x |𝜙) = pZ (z)pH (h)pX |ZH (x |z, h) ,

where x is an observation (e.g., an MNIST image), h is a continuous latent variable with

a n-dimensional standard Gaussian prior, and z is a discrete random variable with a uni-

form prior over K categories.

The semi-supervised objective is

LD(𝜙) = − log pX (x |𝜙) − log pXZ (x , z |𝜙) +R(𝜙) , (5.2)

where R(𝜙) is a regularizer we will specify below, and log pX (x |𝜙) and log pXZ (x , z |𝜙) is

the log-likelihood of the unsupervised and supervised components, respectively.

3https://github.com/deep-spin/sparse-marginalization-lvm

81

https://github.com/deep-spin/sparse-marginalization-lvm

5. Efficient Marginalization of Discrete and Structured Latent Variables

For the unsupervised component of the loss, note that the marginal likelihood

pX (x |𝜙) =
K∑︁
z=1

∫
h
pX |ZH (x |z, h; 𝜙)pH (h)pZ (z) dh

is intractable, due to the marginalization of h ∈ ℝn. For the same reason, the marginal

likelihood of the supervised component of the loss pXZ (x , z |𝜙) is also intractable. Ad-

ditionally, on the unsupervised component, for a fixed h (e.g., sampled), marginalizing z

requires K calls to the decoder, which can be costly depending on its architecture.

To circumvent the need for the marginal likelihood, Kingma et al. [2014] use varia-

tional inference [Jordan et al., 1999] with an approximate posterior 𝜋 (z |x; 𝜃𝜋)q(h |z, x; 𝜆).

This trains a classifier 𝜋 (z |x; 𝜃𝜋) along with the generative model. In Kingma et al. [2014],

h is sampled with the reparameterization trick [Kingma and Welling, 2014, Rezende et al.,

2014], and the expectation over z is computed in closed-form, that is, assessing all K

terms of the sum for a sampled h. Under the notation in §2.4, we let 𝜃ℓ = {𝜆 , 𝜙} and

define 𝜋 (z |x; 𝜃𝜋) B q(z |x; 𝜆) and the loss in Equation 5.2 turns into

LD(𝜃) =
∑︁
z′∈Z

𝜋 (z′|x; 𝜃𝜋)ℓU (x , z′; 𝜃ℓ) + log 𝜋 (z |x; 𝜃𝜋)ℓL(x , z; 𝜃ℓ) +R(𝜃) , (5.3)

where for the unsupervised component

ℓU (x , z; 𝜃ℓ) B − 𝔼q(h|z,𝜆)
[
log pX |ZH (x |z, h; 𝜙)

]
− log pZ (z)

𝜋 (z |x; 𝜃𝜋)

+ KL [q(h |x , z; 𝜆) ∥ pH (h)] ,

which turns Equation 2.17 into the (negative) evidence lower bound (ELBO). For the

82

5.5 Experimental Analysis

supervised component in Equation 5.2 we let

ℓL(x , z; 𝜃ℓ) B − 𝔼q(h|z,𝜆)
[
log pX |ZH (x |z, h; 𝜙)

]
− log pZ (z)

+ KL [q(h|x , z; 𝜆) ∥ pH (h)] .

Finally, to complete the specification of Equation 5.3, we let R(𝜃) = − log 𝜋 (z |x; 𝜃𝜋)

when z is supervised in order to train the classifier on the supervised data as well. To up-

date q(h|x , z; 𝜆), we use the reparameterization trick to obtain gradients through a sam-

pled h. For 𝜋 (z |x; 𝜃𝜋), we may still explicitly marginalize over each possible assignment

of z, but this has a multiplicative cost onK. As an alternative, we parameterize 𝜋 (z |x , 𝜃𝜋)

with a sparse mapping, comparing it to the original formulation and with stochastic gra-

dients based on SFE and continuous relaxations of z.

1 50 100 150 200
Epoch

98

99

100

101

102

103

104

105

N
eg

at
iv

e
E

LB
O

Exact sum (Sparse)
Exact sum
Sum&Sample
SFE
SFE+
NVIL
Gumbel
ST Gumbel

Figure 5.1: Learning curves on the test set for semi-supervised VAE on MNIST.

Data and architecture. We evaluate this model on the MNIST dataset [LeCun et al.,

1998], using 10% of labeled data, treating the remaining data as unlabeled. MNIST con-

sists of 28 × 28 gray-scale images of hand-written digits. It contains 60K data points for

83

5. Efficient Marginalization of Discrete and Structured Latent Variables

Method Accuracy (%) Decoder calls

Monte Carlo
SFE 94.75± .002 1
SFE+ 96.53± .001 2
NVIL 96.01± .002 1
Sum&Sample 96.73± .001 2
Gumbel 95.46± .001 1
ST Gumbel 86.35± .006 1

Marginalization
Dense 96.93± .001 10
Sparse (proposed) 96.87± .001 1.01± 0.01

Table 5.1: Average test results and standard errors over 10 runs for semi-supervised VAE
on MNIST.

training and 10K for testing. We perform model selection on the last 10K data points

of the training split. In this experiment, the classification network consists of three fully

connected hidden layers of size 256, using ReLU activations. The generative and infer-

ence network both consist of one hidden layer of size 128, also with ReLU activations.

The multivariate Gaussian has 8 dimensions and its covariance is diagonal. For all mod-

els we have chosen the learning rate based on the best ELBO on the validation set, doing

a grid search (5e-5, 1e-4, 5e-4, 1e-3, 5e-3). The accuracy shown in Table 5.1 is the test

accuracy taken after the last epoch of training. The temperature of the Gumbel models

was annealed according to 𝜏 = max (0.5, −rt), where t is the global training step. For

these models, we also did a grid search over r (1e-5, 1e-4) and over the frequency of up-

dating 𝜏 every (500, 1000) steps. Optimization was done with Adam. For our method,

in the labeled loss component of the semi-supervised objective, we used the sparsemax

loss [Martins and Astudillo, 2016]. Following Liu et al. [2019], we pre-train the net-

work with only labeled data before training with the whole training set. Likewise, for our

method, we pre-trained the network on the sparsemax loss and every other method with

the Negative Log-Likelihood loss. Each model was trained for 200 epochs.

Comparisons. Our proposal’s key ingredient is sparsity, which permits exact marginal-

ization and a deterministic gradient. To investigate the impact of sparsity alone, we report

84

5.5 Experimental Analysis

a comparison against the exact marginalization over the entire support of Zusing a dense

softmax parameterization. To investigate the impact of deterministic gradients, we com-

pare to stochastic gradients:

• SFE with a moving average baseline;

• SFE with a self-critic baseline [SFE+; Rennie et al., 2017], that is, we use

log pX |ZH (x |z′, h; 𝜙) as baseline, where z′ ∼ 𝜋 (z |x; 𝜃𝜋) is an independent sample;

• NVIL [Mnih and Gregor, 2014] with a learned baseline (we train an MLP to predict

the learning signal by minimizing mean squared error); 4

• Sum-and-sample [Liu et al., 2019];

• Gumbel-Softmax, which relaxes the random variable to the interior of the simplex;

• ST Gumbel-Softmax, which discretizes the relaxation in the forward pass, but ig-

nores the discretization function in the backward pass.5

Results and discussion. In Figure 5.1, we see that our proposed sparse marginaliza-

tion approach performs just as well as its dense counterpart, both in terms of ELBO and

accuracy. However, by inspecting the number of times each method calls the decoder

for assessments of pX |ZH (x |z, h; 𝜙), we can see that the effective support of our method

is much smaller — sparsemax-parameterized posteriors get very confident, and mostly

require one, and sometimes two, calls to the decoder. Regarding the Monte Carlo meth-

ods, the continuous relaxation done by Gumbel-Softmax underperformed all the other

methods, except for SFE with a moving average. While SFE+ and Sum&Sample are very

strong performers, they will always require throughout training the same number of calls

to the decoder (in this case, two). On the other hand, sparsemax makes a small number

4NVIL and SFE+ are similar, the difference being that the baseline in SFE+ does not require additional
parameters nor does it introduce additional objectives.

5For Gumbel-Softmax (with and without ST), we follow Jang et al. [2017] and substitute
KL(𝜋 (z |x; 𝜃𝜋)∥pZ (z)) in the ELBO by the KL divergence of Categorical(softmax(s)) from a discrete uni-
form prior. Strictly speaking, this means the objective is not a proper ELBO and its relationship to an
ELBO is unclear [Maddison et al., 2017, Appendix C.2].

85

5. Efficient Marginalization of Discrete and Structured Latent Variables

of decoder calls not due to a choice in hyperparameters but thanks to the model converg-

ing to only using a small support, which can endow this method with a lower number of

computations as it becomes more confident.

5.5.2 Emergent Communication Game

Emergent communication studies how two agents can develop a communication protocol

to solve a task collaboratively [Kirby, 2002]. Recent work used neural latent variable

models to train these agents via a “collaborative game” between them [Lazaridou et al.,

2017, Havrylov and Titov, 2017, Jorge et al., 2016, Foerster et al., 2016, Sukhbaatar

et al., 2016]. In Lazaridou et al. [2017], one of the agents, the sender, sees an image

vy and sends a single symbol message z chosen from the vocabulary set Z to the other

agent, the receiver, who needs to choose vy out of a set of images V = {v1 , . . . , vC}.6

They found that the messages communicated this way can be correlated with broad object

properties amenable to interpretation by humans. In our framework of Equation 2.17,

we let x = (V, y) and define

ℓ (x , z; 𝜃) B − log pX |Z (y |V, z; 𝜃ℓ)

and

𝜋 (z |x; 𝜃) B pZ |X (z |vy; 𝜃𝜋) ,

where pX |Z (y |V, z; 𝜃ℓ) corresponds to the sender and pZ |X (z |vy; 𝜃𝜋) to the receiver. Fol-

lowing Lazaridou et al. [2017], we add an entropy regularization of 𝜋 (z |x; 𝜃) to the loss,

with a coefficient as an hyperparameter [Mnih et al., 2016].

Data and architecture. In this application, we closely followed the experimental proce-

dure described by Lazaridou et al. [2017] with a few key differences. The architecture of

6Lazaridou et al. [2017] lets the sender see the full set V. However, we follow Havrylov and Titov
[2017] in showing only the correct image vy to the sender, making the game harder, as the message z needs
to encode a good “description” of vy instead of encoding only its differences from V\ {vy}.

86

5.5 Experimental Analysis

the sender and the receiver is identical with the exception that the sender does not take

as input the distracting images along with the correct image — only the correct image.

To make the game even harder, we increase the collection of images |V| as suggested by

Havrylov and Titov [2017]; in our experiments, we increase it from 2 to 16. and the vo-

cabulary of the sender was increased to 256. The hidden size and embedding size were

also increased to 512 and 256, respectively. We did a grid search on the learning rate

(0.01, 0.005, 0.001) and entropy regularizer (0.1, 0.05, 0.01) and chose the best con-

figuration for each model on the validation set based on the communication success. For

the Gumbel models, we applied the same schedule and grid search to the temperature

as described in §5.5.1. All models were trained with the Adam optimizer, with a batch

size of 64 and during 200 epochs. We choose the vocabulary of the sender to be 256,

the hidden size to be 512 and the embedding size to be 256. All methods are trained for

500 epochs. The data used by Lazaridou et al. [2017] is a subset of ImageNet containing

463,000 images, chosen by sampling 100 images from 463 base-level concepts. The im-

ages are then applied a forward-pass through the pre-trained VGG ConvNet [Simonyan

and Zisserman, 2015] and the representations at the second-to-last fully connected layer

are saved to use as input to the sender/receiver.

Comparisons. We compare our method to stochastic gradient estimators as well as ex-

act marginalization under a dense softmax parameterization of pZ |X (z |vy; 𝜃𝜋). Again,

we have unbiased (SFE with moving average baseline, SFE+, and NVIL) and biased

(Gumbel-Softmax and ST Gumbel-Softmax) estimators. For SFE we also experiment

using a 0/1 loss.

Results and discussion. Table 5.2 shows the communication success (accuracy of the

receiver at picking the correct image vy). While the communication success for |V| = 2

in Lazaridou et al. [2017] was close to perfect, we see that increasing |V| to 16 makes

this game much harder to sampling-based approaches. Only the models that do explicit

marginalization achieve close to perfect communication in the test set. However, as Z

87

5. Efficient Marginalization of Discrete and Structured Latent Variables

Method Communication success (%) Decoder calls

Monte Carlo
SFE (NLL) 33.05 ± 2.84 1
SFE (0/1) 55.36 ± 2.92 1
SFE+ (0/1) 44.32 ± 2.72 2
NVIL 37.04 ± 1.61 1
Gumbel 23.51 ± 16.19 1
ST Gumbel 27.42 ± 13.36 1

Marginalization
Dense 93.37 ± 0.42 256
Sparse (proposed) 93.35 ± 0.50 3.13 ± 0.48

Table 5.2: Emergent communication success test results, averaged across 10 runs. Ran-
dom guess baseline 6.25%.

increases, marginalizing with a softmax parameterization gets computationally more ex-

pensive, as it requires |Z| forward and backward passes on the receiver. Unlike softmax,

the model trained with sparsemax gives very small support, requiring on average only 3

decoder calls. In fact, sparsemax starts off dense while exploring, but quickly becomes

very sparse (Figure 5.2).

5.5.3 Bit-Vector Variational Auto-Encoder

As described in §5.4, combinatorial interactions and constraints will make Z exponen-

tially large. In this section, we study the illustrative case of encoding images into a binary

codeword z, by training a latent bit-vector variational auto-encoder [Jang et al., 2017,

Mnih and Gregor, 2014]. One approach for parameterizing the approximate posterior is

to use a Gibbs distribution, decomposable as a product of independent Bernoulli,

q(z |x; 𝜆) ∝ exp(⟨az , t⟩) =
D∏
i=1

q(zi |x; 𝜆) ,

with each zi being a Bernoulli with parameter ti , and D being the size of the bit-vector.

While marginalizing over all the possible z is intractable, drawing samples can be done ef-

ficiently by sampling each component independently, and the entropy has a closed-form

88

5.5 Experimental Analysis

0 20 40 60 80 100
Epoch

1

50

100

150

200

N
. d

ec
od

er
 c

al
ls

sparsemax
SFE

Figure 5.2: Median decoder calls per epoch during training time with 10 and 90 per-
centiles in dotted lines by sparsemax.

expression. This efficient sampling and entropy computation relies on an independence

assumption; in general, we may not have access to such efficient computation.

Training this VAE to minimize the negative ELBO corresponds to

ℓ (x , z; 𝜃ℓ) B − log
pXZ (x , z |𝜙)
q(z |x , 𝜆) ;

we use a uniform prior pZ (z) = 1/|Z| = 1/2D. This objective does not constrain

𝜋 (z |x; 𝜃𝜋) B q(z |x , 𝜆) to the Gibbs parameterization, and thus to apply our methods

we will differ from it.

Top-k sparsemax parameterization. As pointed out in §5.4, we now cannot explicitly

handle the sparsemax mapping 𝝃 = sparsemax(s), as it involves a vector of dimension 2D.

However, given t, we can efficiently find the k largest configurations in time O(kD), with

the procedure described in §5.4.1, and thus we can evaluate sparsemaxk (s) efficiently.

89

5. Efficient Marginalization of Discrete and Structured Latent Variables

SparseMAP parameterization. Another sparse alternative to the intractable structured

sparsemax, as discussed in §5.4, is SparseMAP. In this case, we compute an optimal distri-

bution 𝝃 using the active set algorithm of Niculae et al. [2018a], by using a maximization

oracle which can be computed in O(D):

argmax
z
⟨az , t⟩ = z★ s.t. [az★]i =

1, ti ≥ 0

0, ti < 0
.

Since SparseMAP can handle structured problems, we also experimented with adding

a budget constraint to SparseMAP: this is done by adding a constraint ∥z∥1 ≤ B, where

B ≤ D; we used b = D
2 . The budget constraint ensures the images are represented with

sparse codes, and the maximization oracle can be computed in O(D logD). This is done

by sorting the Bernoulli scores and selecting the entries among the top-B which have a

positive score.

We stress that, with both top-k sparsemax and SparseMAP parameterizations, z does

not decompose into a product of independent binary variables: this property is spe-

cific to the Gibbs parameterization. However, since these new approaches induce a very

sparse approximate posterior q, we may compute the terms 𝔼q(z |x;𝜆) [log pX |Z (x |z, 𝜙)] and

𝔼q(z |x;𝜆) [log q(z |x; 𝜆)] explicitly.

Data and architecture. We use Fashion-MNIST [Xiao et al., 2017], consisting of 28 ×

28, 256-level gray-scale images of clothes. It contains 60K data points for training and

10K data points for testing. We perform model selection on the last 10K data points

of the training split. The decoder uses an independent categorical distribution for each

pixel, pX |Z (x |z; 𝜙) =
∏28
i=1

∏28
j=1 pX |Z (xi j |z; 𝜙). For top-k sparsemax, we choose k = 10.

We have set the generative and inference network to consist of one hidden layer with 128

nodes, using ReLU activations. We have searched a learning rate by doing a grid search

(0.0005, 0.001, 0.002) and have chosen the model based on the ELBO performance

on the validation set. For the Gumbel models, we applied the same schedule and grid

90

5.5 Experimental Analysis

Method D = 32 D = 128

Monte Carlo
SFE 3.74 3.77
SFE+ 3.61 3.59
NVIL 3.65 3.60
Gumbel 3.57 3.49
ST Gumbel 3.53 3.55

Marginalization
Top-k sparsemax 3.62 3.61
SparseMAP 3.72 3.67
SparseMAP (w/ budget) 3.64 3.66

Table 5.3: Test results for Fashion-MNIST. NLL in bits/dim (lower, the better).

search to the temperature as described in §5.5.1. We used the Adam optimizer.

Comparisons. This time, exact marginalization under a dense parameterization of

q(z |x; 𝜆) is truly intractable, so we can only compare our method to stochastic gradi-

ent estimators. We have unbiased SFE-based estimators (SFE with moving average

baseline, SFE+, and NVIL), and biased reparameterized gradient estimators (Gumbel-

Softmax and ST Gumbel-Softmax). As there is no supervision for the latent code, we

cannot compare the methods in terms of accuracy or task success. Instead, we display

the trained models in the rate-distortion (RD) plane [Alemi et al., 2018]7 and also report

bits-per-dimension of x, estimated with importance sampling, on held-out data.

Bits-per-dimension is the negative logarithm of the marginal likelihood normalized

per number of pixels in the image, thus we need to assess or estimate the marginal likeli-

hood of observations. For dense parameterizations, the usual option is importance sam-

pling (IS) using the trained approximate posterior as importance distribution: i.e.,

log pX (x |𝜙)
IS≈ log

(
1
S

S∑︁
s=1

pXZ (z(s) , x |𝜙)
q(z(s) |x; 𝜆)

)

with z(s) ∼ q(z |x; 𝜆). The result is a stochastic lower bound which converges to the true

7Distortion is the expected value of the reconstruction negative log-likelihood, while the rate is the
average KL divergence from the prior to the approximate posterior.

91

5. Efficient Marginalization of Discrete and Structured Latent Variables

21.0 21.5 22.0
Rate (nats)

1900

1950

2000

2050

D
is

to
rt

io
n

(n
at

s)
(i) D = 32

60 70 80 90
Rate (nats)

(ii) D = 128
SFE
SFE+
NVIL
Gumbel
ST Gumbel
sparsemaxk

SparseMAP
SparseMAP +budget

Figure 5.3: Test results for Fashion-MNIST. RD plots (the closer to the lower right
corner, the better).

log-marginal in the limit as S →∞. With a sparse posterior approximation, we can split

the marginalization

log pX (x |𝜙) = log ©«
∑︁
z∈Z̄

pZ (z)pX |Z (x |z; 𝜙) +
∑︁

z∈Z\Z
pZ (z)pX |Z (x |z; 𝜙)

ª®¬
into one part that handles outcomes in the support Z̄of the sparse posterior approxima-

tion and another that handles the outcomes in the complement set Z\ Z̄. We compute

the first part exactly and estimate the second part via rejection sampling from pZ (z).

Results and discussion. Table 5.3 shows an importance sampling estimate (1024 sam-

ples per test example were taken) of the negative log-likelihood for the several methods,

together with the converged values of each method in the RD plane in Figure 5.3. Both

show results for which the bit-vector has dimensionalityD = 32 andD = 128. Regarding

the estimated negative log-likelihood, our methods exhibit increased performance when

compared to SFE, and top-k sparsemax is competitive with the remaining unbiased es-

timators. However, in the RD plane, both our methods show comparable performance

92

5.5 Experimental Analysis

to SFE+ and NVIL for D = 32, but for D = 128 all of our methods have a significantly

higher rate and lower distortion than any unbiased estimator, suggesting a better fit of

pX (x |𝜙) [Alemi et al., 2018]. In Figure 5.4, we can observe the training progress in num-

ber of calls to pX |Z (x |z; 𝜙) for the models with 32 and 128 latent bits, respectively. While

sparsemaxk introduces bias towards the most probable assignments and may discard out-

comes that sparsemax would assign a non-zero probability to, as training progresses dis-

tributions may (or tend to) be sufficiently sparse and this mismatch disappears, making

the gradient computation exact.

Figure 5.4: Bit vector VAE median and quartile decoder calls per epoch, D = 32 (left) /
D = 128 (right).

Remarkably, this happens for D = 32 — the support of sparsemaxk is smaller than k,

giving the true gradient to q(z |x; 𝜆) for most of the training. This no longer happens

for D = 128, for which it remains with full support throughout, due to the much larger

search space. On the other hand, SparseMAP solutions become very sparse from the start

in both cases, while still obtaining good performance. There is, therefore, a trade-off be-

tween the solutions we propose: on one hand, sparsemaxk can become exact with respect

to the expectation in Equation 2.17, but it only does so if the chosen k is suitable to the

difficulty of the model; on the other hand, SparseMAP may not offer an exact gradient

to q(z |x; 𝜆), but its performance is very close to sparsemaxk and its higher propensity for

sparsity gifts it with less computation. Figure 5.5 shows the downstream loss (ELBO)

93

5. Efficient Marginalization of Discrete and Structured Latent Variables

over epochs and over the median number of decoder calls per epoch. The plots on Fig-

ure 5.5b show how our methods have comparable computational overhead to sampling

approaches. Oftentimes, our methods could have been trained in fewer epochs to obtain

the same performance as the sampling estimators have for 100 epochs.

2000

2100

2200

2300

2400

N
eg

at
iv

e
E

LB
O

SFE
SFE+
NVIL
Gumbel
ST Gumbel
sparsemaxk

SparseMAP
SparseMAP +budget

0 25 50 75 100
Epoch

2000

2100

2200

2300

2400

2500

N
eg

at
iv

e
E

LB
O

(a) Neg. ELBO over training epochs.

2000

2100

2200

2300

2400

N
eg

at
iv

e
E

LB
O

SFE
SFE+
NVIL
Gumbel
ST Gumbel
sparsemaxk

SparseMAP
SparseMAP +budget

0 100 200 300
N. decoder calls

2000

2100

2200

2300

2400

2500

N
eg

at
iv

e
E

LB
O

(b) Neg. ELBO over decoder calls.

Figure 5.5: Performance on the validation set for the experiment in §5.5.3, D = 32 (top)
/ D = 128 (bottom). For D = 32, top-k sparsemax continues until a total of 561 median
decoder calls, and for D = 128 it continues until a total of 998.

Concerning relaxed estimators, note that the reconstruction loss is computed given

a continuous sample, rather than a discrete one, allowing it more flexibility to directly

reduce distortion and potentially explaining why it does well in that regard. Moreover,

the rate of the relaxed model is unknown,8 and instead we plot the rate as if z was given

discrete treatment, which, although common practice, makes comparisons to other esti-

8Estimating it would require a choice of Binary Concrete prior and an estimate of the KL divergence
from that to the Binary Concrete approximate posterior [Maddison et al., 2017, Appendix C.3.2].

94

5.6 Subsequent Work

mators inadequate. For ST Gumbel-Softmax the situation is different since, after train-

ing, z is given discrete treatment throughout. Its success shows that, unlike in the other

tasks considered, training on biased gradients is not too problematic.

5.6 Subsequent Work

Correia et al. [2020] proved to be a relevant contribution to the field of discrete and

structured latent variable modeling. In particular, and most closely related to our work,

Chen et al. [2021] added another method to the family of efficient marginalization tech-

niques that we started in Correia et al. [2020]. They introduce a new function called ev-

softmax that has its origins in evidential theory and evidential sparsification [Itkina et al.,

2020]. The properties of this function are more similar to softmax than sparsemax, while

still allowing for a sparse distribution. They show that their method is less prone to mul-

timodality collapse [Itkina et al., 2020] and show improved results in the experiment

described in §5.5.1.

In another application of sparsity for discrete latent variable models, Farinhas et al.

[2022] introduced a new family of mixed discrete-continuous random variables that can

be used to train these models. Their method has its origins in the recent field of sparse

and continuous distributions [Martins et al., 2020]. Their method is applied to the ex-

periments that we described in §5.5.2 and §5.5.3 and show promising results. As in our

case, their method also bypasses the need for methods with high variance, as in SFE, and

relaxations of the discrete space, as in Gumbel-Softmax; however, in their case, that’s

not due to explicit marginalization but rather due to the nature of the mixed random

variables that they introduce.

As we will explore further in the next chapter, we believe that the methods we have

proposed here have potential for structured applications. In particular, due to the struc-

tured nature of language, the explicit marginalization of the structured space can prove

valuable to NLP. For example, our method has been applied successfully for semantic

95

5. Efficient Marginalization of Discrete and Structured Latent Variables

parsing [Wang et al., 2021]. In this work, the authors use our top-k sparsemax method

in the E-step of an EM algorithm. Since they do not have access to a true top-k, they

approximate it using beam search. When compared to the other baselines and other

methods proposed, the approach that used top-k sparsemax had the best performance.

5.7 Final Remarks and Chapter Summary

The solutions that were available to train discrete latent variable models greatly relied on

MC sampling, which can have high variance. Methods that aim to decrease this variance

are often not trivial to train and implement and may disincentivize practitioners from

using this class of models. However, we believe that discrete latent variable models have,

in many cases, more interpretable, intuitive, and compact latent representations.

We described a novel training strategy for discrete latent variable models, eschew-

ing the common approach based on MC gradient estimation in favor of deterministic,

exact marginalization under a sparse distribution. Our training strategy offers: a simple

approach in implementation to training these models; no addition in the number of pa-

rameters; low increase in computational overhead (especially when compared to more

sophisticated methods of variance reduction [Liu et al., 2019]); and improved perfor-

mance. Sparsity leads to a powerful adaptive method, which can investigate fewer or

more latent assignments z depending on the ambiguity of a training instance x, as well as

on the stage in training.

We showcase the performance and flexibility of our methods by investigating a variety

of applications, with both discrete and structured latent variables, with positive results.

Our models very quickly approach a small number of latent assignment evaluations per

sample, but make progress much faster and overall lead to superior results.

Our proposed method thus offers the accuracy and robustness of exact marginaliza-

tion while meeting the efficiency and flexibility of sampling methods, providing a promis-

ing alternative to successfully train more compact neural models. As we are learning from

96

5.7 Final Remarks and Chapter Summary

subsequent works (§5.6), we believe that our method can be used to address the challenges

of training these sorts of models in a variety of applications, particularly NLP.

97

5. Efficient Marginalization of Discrete and Structured Latent Variables

98

6
Conclusions

Contents
6.1 Summary of Contributions . 101
6.2 Open Problems and Limitations . 102
6.3 Future Directions . 103
6.4 Broader Impact . 105

99

6. Conclusions

100

6.1 Summary of Contributions

To wrap up the present thesis, we review the main contributions developed in this work,

and discuss their impact, limitations, potential directions for future work, and their

broader impact and ethical implications.

6.1 Summary of Contributions

Throughout this thesis, we have developed models and techniques that aim to make neu-

ral models more data-efficient, transparent, and compact.

In Chapter 3, we achieved data-efficiency by leveraging the transfer learning power

of a pre-trained language model to avoid the need for producing a large synthetic dataset,

in the context of a real-world application: Automatic Post-Editing.

In Chapter 4, we proposed a model with increased transparency by letting it learn

its own sparsity. The chosen application was NMT, and we showed how the sparsity can

help to interpret the various roles of each attention head in the model.

Finally, in Chapter 5, we once again leveraged learnable sparsity by introducing a

new method to train latent variable models with discrete or structured nodes. We show

the efficacy of our method in several applications: semi-supervised learning, emergent

communication, and unsupervised learning of bit-vector representations. This method

achieves better performance than standard methodologies for training discrete latent

variable models and as such aids in the development of more compact neural models.

A common theme in this thesis is sparsity, particularly sparse mappings into the sim-

plex. We have followed in the footsteps of work started by Martins and Astudillo [2016]

and proposed novel uses of these sparse mappings and promising alternatives to them. In

all works described, we have shown how in different applications we can let neural models

learn how much sparsity they need; be it in the context of an attention mechanism, or in

the context of the number of relevant latent assignments during training.

On another front, we tackled some forms of weak supervision. On one hand, we

use transfer learning and minimize the amount of data required to train an APE model

101

6. Conclusions

in Chapter 3. On the other hand, we also applied our method of Chapter 5 to obtain

improved performance on a semi-supervised learning task. Additionally, in §4.6 we saw

how our discovered attention head roles can be used to fix attention patterns in a trans-

former, increasing inductive bias in the process [Raganato et al., 2020].

6.2 Open Problems and Limitations

In the pursuit of diligent research, we briefly discuss some of the open problems and

limitations of the work presented in this thesis. We seek not to diminish any of these

limitations, but rather present them fairly. We will also discuss the ethical ramifications

of our work in a later section (§6.4).

As previously stated, sparsity is a prominent theme in this work. That sparsity is

achieved through probability normalization functions such as sparsemax, 𝛼-entmax, and

SparseMAP. While sparsity can lead to increased efficiency, we do not fully take ad-

vantage of this in the present thesis or in the publicly released code. For example, for

𝛼-entmax, further speed-ups are possible, with careful engineering, by leveraging more

parallelism in the bisection algorithm for computing it. This is a relevant research direc-

tion, as it is now possible to exploit recent generations of GPU architectures which are

more sparse-friendly than before.

In Chapter 3, we have used a large pre-trained model to circumvent the need to train

MT models to produce a large synthetic dataset and then train an APE model on it.

Although we believe this to be a way to spare resources, we do not wish to underplay the

resources used to train the pre-trained model itself.

While we have shown promising results in Chapter 5, we are aware that the experi-

ments we conducted were performed on toy datasets. While this may overemphasize the

success of the work, we have seen in §5.6 that our method has already been successfully

applied to applications that have real-world datasets. We hope to continue seeing this

trend in the future.

102

6.3 Future Directions

6.3 Future Directions

We further list in this section exciting directions for future work that draw inspiration

from the methods proposed in this thesis. We hope this might inspire other researchers

in the field to explore these directions and extend the ideas presented.

Semi-supervised learning. Some forms of weak supervision were explored in this

work. In particular, we have shown promising results in Chapter 5 by introducing a

new method to train discrete latent variable models, which can be used to train semi-

supervised models (§5.5.1). We believe that our method can be used in real-world ap-

plications where supervision is limited and that it will lead to better results than standard

methods. For example, in NLP, there are many applications where a relaxation of the

discrete space is not possible [e.g., Lee et al., 2019]. We can consider the semi-supervised

loss

Lx (𝜃) =
∑︁
z∈Z

𝜋 (z |x)ℓ (x , z; 𝜃) +
∑︁
z∈Z

𝜋 (z |x , y)ℓ (x , y , z; 𝜃) +R(𝜃) ,

which is very similar to the loss used in §5.5.1, and apply it to more challenging datasets.

Whereas before we could only rely on high variance methods if we wished to train such

a model, we can now circumvent this limitation by using our training method and com-

puting deterministic gradients.

Non-differentiability of the latent variable model learning signal. We note how, in

Equation 2.17, the training of the parameters that learn 𝜋 (z |x; 𝜃) is decoupled from

the training of the parameters of the generative model of the downstream loss: when

marginalizing the latent variables, the downstream loss only scales the gradients com-

puted from 𝜋 (z |x; 𝜃). This means that our method can still be applied when the down-

stream loss component does not have any trainable parameters. Furthermore, that com-

ponent in Equation 2.17 can be replaced by any function, even non-differentiable, akin

to a reward signal. One example of a real-world application where the downstream loss

doesn’t have learnable parameters is the prompting of large pre-trained language mod-

103

6. Conclusions

els [Liu et al., 2021]. In this line of work, the pre-trained model is assumed to already

have the knowledge required to handle the task at hand stored in its parameters and only a

prompt is required to generate the desired output. This problem could be framed as a la-

tent variable model and one could interpret a natural language prompt as a discrete latent

variable. Using the property we just described, the downstream task can be optimized via

any differentiable or non-differentiable reward signal

Lx (𝜃) = −
∑︁
z∈Z

𝜋 (z |x; 𝜃)r (x , z) ,

where note that r does not depend on the model’s parameters 𝜃 .

Latent draft translation. Related to the overall present thesis topics of increasing trans-

parency and compactness of neural models in NLP, we highlight the potential of proto-

type editing [Guu et al., 2018, He et al., 2020]. In this generative model, the generative

process has two main steps: (1) selecting a prototype sequence of tokens t from a list of

possible prototypes (e.g., the training data), and (2) editing that prototype by sampling a

latent edit vector z that encodes the type of edit (e.g., active to passive, reordering, inter

alia). We note the promising possibility of using this approach to NMT: While He et al.

[2020] apply their sparse neural editor to language modeling, we will model instead a

conditional distribution over X× Y:

pYTZ (y , t , z |x) = pT (t |x; 𝜃)pZ (z |x; 𝜃)pY |TZ (y |t , z; 𝜃) .

We may think of t as being a template for y— it can be a lexicalized rule with gaps or

variables, a phrase-based mapping from a section of x to a string in the target language,

among others. Once again, for deterministic gradients and greater training stability, we

may use the training method proposed in Chapter 5.

104

6.4 Broader Impact

6.4 Broader Impact

We discuss here the broader impact of our work.

First of all, we note that all of our code has been open-sourced to ensure it’s scruti-

nizable by anyone and to boost any related future work that other researchers might want

to pursue.

A common theme in this thesis is transparency. The main objective of improving such

property in neural models is to have superior explanatory power and therefore to aid in

understanding cases in which the model failed the downstream task. Interpretability of

deep neural models can be essential to better discover any ethically harmful biases that

exist in the data or in the model itself.

On the other hand, the models discussed in this work may also pave the way for

malicious use cases, such as is the case for generative models with Deepfakes, fake hu-

man avatars used by malevolent Twitter users, or generation models that automatically

generate fraudulent news, often based on the large pre-trained language models used in

this thesis. Particularly, generative models as the ones used in Chapter 5 are remark-

able at sampling new instances of fake data and, with the power of latent variables, the

interpretability discussed before can be used maliciously to further push harmful biases

instead of removing them. Furthermore, our work in Chapter 5 is promising in improv-

ing the performance of latent variable models with several discrete variables, that can be

trained as attributes to control the sample generation. Attributes that can be activated or

deactivated at will to generate fake data can both help beneficial and malignant users to

finely control the generated sample. Our work may be currently agnostic to this, but we

recognize the dangers and encourage effort to combating any malicious applications.

Energy-wise, our data-efficient and compact models aim to require less data and com-

putation than other models that rely on a massive amount of data and infrastructure. This

makes our models ideal for situations where data is scarce, or where there are few compu-

tational resources to train large models. We believe that data efficiency and compactness

105

6. Conclusions

are a step forward in the direction of alleviating environmental concerns of deep learning

research [Strubell et al., 2019]. However, we note that, for example, the adaptive sparsity

of the models proposed in Chapter 5 tend to use more resources earlier on than standard

methods. Even though in the applications shown they consume much less as training

progresses, it’s not clear if that trend is still observed in all potential applications.

Regarding sparsity, we note how sparsity may exhibit a larger risk of disregarding cer-

tain correlations or groups of observations, and thus may contribute to misinforming a

practitioner. Where such a model that uses sparsity informs decision-makers on matters

that affect lives, these decisions may be based on an incomplete view of the correlations in

the data and/or these correlations may be exaggerated in harmful ways. At this point, it

is unclear to which extent this happens and, if it does, whether it is consistent across var-

ious uses. We believe that a better understanding of the impact of sparsity in potentially

oversimplifying correlations is an additional interesting avenue of future work.

106

Bibliography

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is All You Need. In Proceedings
of NeurIPS, 2017.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. In Proceedings of ICLR, 2015.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding. In Pro-
ceedings of NAACL-HLT, 2019.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language Models are Few-Shot Learners. In Proceedings of NeurIPS, 2020.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Policy Consider-
ations for Deep Learning in NLP. In Proceedings of ACL, 2019.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu Hoang, Roman Grundkiewicz, and
Anthony Aue. Marian: Cost-effective High-Quality Neural Machine Translation in
C++. In Proceedings of WNMT, 2018a.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling Neural Machine
Translation. In Proceedings of WMT, 2018.

Yoon Kim, Sam Wiseman, and Alexander M. Rush. A Tutorial on Deep Latent Variable
Models of Natural Language. preprint arXiv:1812.06834, 2018.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In Proceedings
of ICLR, 2014.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropa-
gation and Approximate Inference in Deep Generative Models. In Proceedings of ICML,
2014.

107

https://arxiv.org/abs/1706.03762
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1906.02243
https://arxiv.org/abs/1906.02243
https://arxiv.org/abs/1805.12096
https://arxiv.org/abs/1805.12096
https://www.aclweb.org/anthology/W18-6301
https://www.aclweb.org/anthology/W18-6301
https://arxiv.org/abs/1812.06834
https://arxiv.org/abs/1812.06834
https://arxiv.org/abs/1312.6114
https://proceedings.mlr.press/v32/rezende14.pdf
https://proceedings.mlr.press/v32/rezende14.pdf

BIBLIOGRAPHY

Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
Semi-supervised Learning with Deep Generative Models. In Proceedings of NeurIPS,
2014.

Ivan Titov and Ryan McDonald. A Joint Model of Text and Aspect Ratings for Sentiment
Summarization. In Proceedings of ACL, 2008.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. Interpretable Neural Predictions with
Differentiable Binary Variables. In Proceedings of ACL, 2019.

Ronald J. Williams. Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning. Machine Learning, 8(3-4):229–256, 1992.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-
Softmax. In Proceedings of ICLR, 2017.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: a
Continous Relaxation of Discrete Random Variables. In Proceedings of ICLR, 2017.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep Contextualized Word Representations. In Proceed-
ings of NAACL, 2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation
by Jointly Learning to Align and Translate. In Proceedings of ICLR, 2015.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learn-
ing with a Unified Text-to-Text Transformer. JMLR, 21(140):1–67, 2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising
Sequence-to-Sequence Pre-training for Natural Language Generation, Translation,
and Comprehension. In Proceedings of ACL, 2020.

André F.T. Martins and Ramón Fernandez Astudillo. From Softmax to Sparsemax: A
Sparse Model of Attention and Multi-Label Classification. In Proceedings of ICML,
2016.

Vlad Niculae and Mathieu Blondel. A Regularized Framework for Sparse and Structured
Neural Attention. In Proceedings of NeurIPS, 2017.

Ben Peters, Vlad Niculae, and André F.T. Martins. Sparse Sequence-to-Sequence Mod-
els. In Proceedings of ACL, 2019.

Sameen Maruf, André F.T. Martins, and Gholamreza Haffari. Selective Attention for
Context-aware Neural Machine Translation. In Proceedings of NAACL-HLT, 2019.

Chaitanya Malaviya, Pedro Ferreira, and André F.T. Martins. Sparse and Constrained
Attention for Neural Machine Translation. In Proceedings of ACL, 2018.

108

https://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf
https://www.aclweb.org/anthology/P08-1036.pdf
https://www.aclweb.org/anthology/P08-1036.pdf
https://arxiv.org/abs/1905.08160
https://arxiv.org/abs/1905.08160
https://link.springer.com/10.1007/BF00992696
https://link.springer.com/10.1007/BF00992696
https://arxiv.org/pdf/1611.01144.pdf
https://arxiv.org/pdf/1611.01144.pdf
https://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1611.00712
https://www.aclweb.org/anthology/N18-1202
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://arxiv.org/abs/1602.02068
https://arxiv.org/abs/1602.02068
https://arxiv.org/abs/1705.07704
https://arxiv.org/abs/1705.07704
https://aclanthology.org/P19-1146/
https://aclanthology.org/P19-1146/
https://arxiv.org/abs/1903.08788
https://arxiv.org/abs/1903.08788
https://aclweb.org/anthology/P18-2059
https://aclweb.org/anthology/P18-2059

BIBLIOGRAPHY

Vlad Niculae, André F.T. Martins, Mathieu Blondel, and Claire Cardie. SparseMAP:
Differentiable Sparse Structured Inference. In Proceedings of ICML, 2018a.

Vlad Niculae, André F.T. Martins, and Claire Cardie. Towards Dynamic Computation
Graphs via Sparse Latent Structure. In Proceedings of EMNLP, 2018b.

Marcos Treviso, António Góis, Patrick Fernandes, Erick Fonseca, and André F. T. Mar-
tins. Predicting Attention Sparsity in Transformers. In Proceedings of SPNLP, 2022.

António Farinhas, Wilker Aziz, Vlad Niculae, and André F. T. Martins. Sparse Com-
munication via Mixed Distributions. In Proceedings of ICLR, 2022.

Gonçalo M. Correia and André F. T. Martins. A Simple and Effective Approach to
Automatic Post-Editing with Transfer Learning. In Proceedings of ACL, 2019.

António V. Lopes, M. Amin Farajian, Gonçalo M. Correia, Jonay Trenous, and André
F. T. Martins. Unbabel’s Submission to the WMT2019 APE Shared Task: BERT-
based Encoder-Decoder for Automatic Post-Editing. In Proceedings of WMT, 2019.

Gonçalo M Correia, Vlad Niculae, and André F.T. Martins. Adaptively Sparse Trans-
formers. In Proceedings of EMNLP, 2019.

Gonçalo M. Correia, Vlad Niculae, Wilker Aziz, and André F. T. Martins. Efficient
Marginalization of Discrete and Structured Latent Variables via Sparsity. In Proceedings
of NeurIPS, 2020.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
Proceedings of ICLR, 2015.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Approaches
to Attention-based Neural Machine Translation. In Proceedings of EMNLP, 2015.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Con-
volutional Sequence to Sequence Learning. In Proceedings of ICML, 2017.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving Lan-
guage Understanding by Generative Pre-Training. preprint, 2018.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A Primer in BERTology: What We
Know About How BERT Works. TACL, 8:842–866, 2020.

Sarthak Jain and Byron C. Wallace. Attention is not Explanation. In Proceedings of
NAACL-HLT, 2019.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning Sparse Neural Net-
works through L0 Regularization. In Proceedings of ICLR, 2018.

Wenqi Shao, Tianjian Meng, Jingyu Li, Ruimao Zhang, Yudian Li, Xiaogang Wang,
and Ping Luo. SSN: Learning Sparse Switchable Normalization via SparsestMax. In
Proceedings of CVPR, 2019.

109

https://arxiv.org/abs/1802.04223
https://arxiv.org/abs/1802.04223
https://arxiv.org/abs/1809.00653
https://arxiv.org/abs/1809.00653
http://arxiv.org/abs/2109.12188
http://arxiv.org/abs/2108.02658
http://arxiv.org/abs/2108.02658
https://arxiv.org/abs/1906.06253
https://arxiv.org/abs/1906.06253
https://arxiv.org/abs/1905.13068
https://arxiv.org/abs/1905.13068
https://arxiv.org/abs/1909.00015
https://arxiv.org/abs/1909.00015
https://arxiv.org/abs/2007.01919
https://arxiv.org/abs/2007.01919
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1705.03122
https://arxiv.org/abs/1705.03122
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://aclanthology.org/2020.tacl-1.54
https://aclanthology.org/2020.tacl-1.54
https://arxiv.org/abs/1902.10186
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1903.03793

BIBLIOGRAPHY

Mathieu Blondel, André F.T. Martins, and Vlad Niculae. Learning Classifiers with
Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms. In Proceed-
ings of AISTATS, 2019.

Michael Held, Philip Wolfe, and Harlan P. Crowder. Validation of Subgradient Opti-
mization. Mathematical Programming, 6(1):62–88, 1974.

Laurent Condat. Fast Projection onto the Simplex and the ℓ1 Ball. Mathematical Pro-
gramming, 158(1-2):575–585, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
Torch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings
of NeurIPS, 2019.

Constantino Tsallis. Possible Generalization of Boltzmann-Gibbs Statistics. Journal of
Statistical Physics, 52:479–487, 1988.

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer New York, 1999.

André F.T. Martins, Mário A.T. Figueiredo, Pedro M.Q. Aguiar, Noah A. Smith, and
Eric P. Xing. AD3: Alternating Directions Dual Decomposition for MAP Inference in
Graphical Models. JMLR, 16(1):495–545, 2015.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals
of Mathematical Statistics, 22(3):400–407, 1951.

Reuven Y. Rubinstein. A Monte Carlo Method for Estimating the Gradient in a Stochas-
tic Network. Unpublished manuscript, Technion, Haifa, Israel, 1976.

John Paisley, David M. Blei, and Michael I. Jordan. Variational Bayesian Inference with
Stochastic Search. In Proceedings of ICML, 2012.

Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. MuProp: Unbiased Back-
propagation for Stochastic Neural Networks. In Proceedings of ICLR, 2016.

Chong Wang, Xi Chen, Alexander J. Smola, and Eric P. Xing. Variance Reduction for
Stochastic Gradient Optimization. In Proceedings of NeurIPS, 2013.

George Tucker, Andriy Mnih, Chris J. Maddison, John Lawson, and Jascha Sohl-
Dickstein. REBAR: Low-variance, Unbiased Gradient Estimates for Discrete Latent
Variable Models. In Proceedings of NeurIPS, 2017.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Duvenaud. Back-
propagation through the Void: Optimizing Control Variates for Black-box Gradient
Estimation. In Proceedings of ICLR, 2018.

George Casella and Christian P Robert. Rao-Blackwellisation of Sampling Schemes.
Biometrika, 83(1):81–94, 1996.

110

https://arxiv.org/abs/1805.09717
https://arxiv.org/abs/1805.09717
https://link.springer.com/article/10.1007/BF01580223
https://link.springer.com/article/10.1007/BF01580223
https://hal.archives-ouvertes.fr/hal-01056171
https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://link.springer.com/article/10.1007/BF01016429
https://doi.org/10.1007/b98874
https://jmlr.org/papers/v16/martins15a.html
https://jmlr.org/papers/v16/martins15a.html
https://projecteuclid.org/download/pdf_1/euclid.aoms/1177729586
https://arxiv.org/abs/1206.6430
https://arxiv.org/abs/1206.6430
https://arxiv.org/pdf/1511.05176.pdf
https://arxiv.org/pdf/1511.05176.pdf
https://papers.nips.cc/paper/5034-variance-reduction-for-stochastic-gradient-optimization.pdf
https://papers.nips.cc/paper/5034-variance-reduction-for-stochastic-gradient-optimization.pdf
https://papers.nips.cc/paper/6856-rebar-low-variance-unbiased-gradient-estimates-for-discrete-latent-variable-models.pdf
https://papers.nips.cc/paper/6856-rebar-low-variance-unbiased-gradient-estimates-for-discrete-latent-variable-models.pdf
https://arxiv.org/pdf/1711.00123.pdf
https://arxiv.org/pdf/1711.00123.pdf
https://arxiv.org/pdf/1711.00123.pdf
https://ecommons.cornell.edu/bitstream/handle/1813/31839/BU-1252-M.pdf;sequence=1

BIBLIOGRAPHY

Rajesh Ranganath, Sean Gerrish, and David Blei. Black Box Variational Inference. In
Proceedings of AISTATS, 2014.

Runjing Liu, Jeffrey Regier, Nilesh Tripuraneni, Michael Jordan, and Jon Mcauliffe. Rao-
Blackwellized Stochastic Gradients for Discrete Distributions. In Proceedings of ICML,
2019.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propagat-
ing Gradients Through Stochastic Neurons for Conditional Computation. preprint
arXiv:1308.3432, 2013.

Martin J. Wainwright and Michael I. Jordan. Graphical Models, Exponential Families,
and Variational Inference. Foundations and Trends® in Machine Learning, 1(1-2):1–305,
2008.

Michel Simard, Nicola Ueffing, Pierre Isabelle, and Roland Kuhn. Rule-Based Transla-
tion with Statistical Phrase-Based Post-Editing. In Proceedings of WMT, 2007.

Vicent Alabau, Christian Buck, Michael Carl, Francisco Casacuberta, Mercedes García-
Martínez, Ulrich Germann, Jesús González-Rubio, Robin Hill, Philipp Koehn, Luis
Leiva, Bartolomé Mesa-Lao, Daniel Ortiz-Martínez, Herve Saint-Amand, Germán
Sanchis Trilles, and Chara Tsoukala. CASMACAT: A Computer-assisted Translation
Workbench. In Proceedings of the Demonstrations at EACL, 2014.

Marcello Federico, Nicola Bertoldi, Mauro Cettolo, Matteo Negri, Marco Turchi, Marco
Trombetti, Alessandro Cattelan, Antonio Farina, Domenico Lupinetti, Andrea Mar-
tines, Alberto Massidda, Holger Schwenk, Loïc Barrault, Frederic Blain, Philipp
Koehn, Christian Buck, and Ulrich Germann. The MateCat Tool. In Proceedings of
COLING, 2014.

Michael Denkowski. Machine Translation for Human Translators. PhD thesis, Carnegie
Mellon University, 2015.

Christopher M. Hokamp. Deep Interactive Text Prediction and Quality Estimation in Trans-
lation Interfaces. PhD thesis, Dublin City University, 2018.

Marcin Junczys-Dowmunt and Roman Grundkiewicz. Log-linear Combinations of
Monolingual and Bilingual Neural Machine Translation Models for Automatic Post-
Editing. In Proceedings of WMT, 2016.

Matteo Negri, Marco Turchi, Rajen Chatterjee, and Nicola Bertoldi. eSCAPE: a Large-
scale Synthetic Corpus for Automatic Post-Editing. In Proceedings of LREC, 2018.

Marcin Junczys-Dowmunt and Roman Grundkiewicz. MS-UEdin Submission to the
WMT2018 APE Shared Task: Dual-Source Transformer for Automatic Post-Editing.
In Proceedings of WMT, 2018.

Amirhossein Tebbifakhr, Ruchit Agrawal, Matteo Negri, and Marco Turchi. Multi-
source Transformer with Combined Losses for Automatic Post-Editing. In Proceedings
of WMT, 2018.

111

https://proceedings.mlr.press/v33/ranganath14.pdf
https://proceedings.mlr.press/v97/liu19c/liu19c.pdf
https://proceedings.mlr.press/v97/liu19c/liu19c.pdf
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://dl.acm.org/doi/abs/10.1561/2200000001
https://dl.acm.org/doi/abs/10.1561/2200000001
https://www.aclweb.org/anthology/W07-0728
https://www.aclweb.org/anthology/W07-0728
https://aclanthology.org/E14-2007
https://aclanthology.org/E14-2007
https://www.aclweb.org/anthology/C14-2028
https://www.lti.cs.cmu.edu/sites/default/files/research/thesis/2015/michael_denkowski_machine_translation_for_human_translators.pdf
https://doras.dcu.ie/22664/1/chris_hokamp_thesis_DORAS_12.9.2018.pdf
https://doras.dcu.ie/22664/1/chris_hokamp_thesis_DORAS_12.9.2018.pdf
https://www.statmt.org/wmt16/pdf/W16-2378.pdf
https://www.statmt.org/wmt16/pdf/W16-2378.pdf
https://www.statmt.org/wmt16/pdf/W16-2378.pdf
https://www.aclweb.org/anthology/L18-1004
https://www.aclweb.org/anthology/L18-1004
https://www.statmt.org/wmt18/pdf/WMT095.pdf
https://www.statmt.org/wmt18/pdf/WMT095.pdf
https://www.statmt.org/wmt18/pdf/WMT099.pdf
https://www.statmt.org/wmt18/pdf/WMT099.pdf

BIBLIOGRAPHY

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in
Translation: Contextualized Word Vectors. In Proceedings of NeurIPS, 2017.

Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-tuning for Text
Classification. In Proceedings of ACL, 2018.

Devendra Sachan and Graham Neubig. Parameter Sharing Methods for Multilingual
Self-Attentional Translation Models. In Proceedings of WMT, 2018.

Alexandre Bérard, Laurent Besacier, and Olivier Pietquin. LIG-CRIStAL Submission
for the WMT 2017 Automatic Post-Editing Task. In Proceedings of WMT, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bow-
man. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
Understanding. In Proceedings of BlackboxNLP, 2018.

Guillaume Lample and Alexis Conneau. Cross-lingual Language Model Pretraining. In
Proceedings of NeurIPS, 2019.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. Open-
NMT: Open-Source Toolkit for Neural Machine Translation. In Proceedings of ACL,
2017.

Rajen Chatterjee, Matteo Negri, Raphael Rubino, and Marco Turchi. Findings of the
WMT 2018 Shared Task on Automatic Post-Editing. In Proceedings of WMT, 2018.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol
Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s Neural Machine
Translation System: Bridging the Gap between Human and Machine Translation.
preprint arXiv:1609.08144, 2016.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul.
A Study of Translation Edit Rate with Targeted Human Annotation. In Proceedings of
AMTA, 2006.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a Method for
Automatic Evaluation of Machine Translation. In Proceedings of ACL, 2002.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
JMLR, 15(1):1929–1958, 2014.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton.
Regularizing Neural Networks by Penalizing Confident Output Distributions. In Pro-
ceedings of ICLR, 2017.

112

https://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors.pdf
https://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors.pdf
https://www.aclweb.org/anthology/P18-1031
https://www.aclweb.org/anthology/P18-1031
https://www.aclweb.org/anthology/W18-6327
https://www.aclweb.org/anthology/W18-6327
https://www.aclweb.org/anthology/W17-4772
https://www.aclweb.org/anthology/W17-4772
https://www.aclweb.org/anthology/W18-5446
https://www.aclweb.org/anthology/W18-5446
https://arxiv.org/abs/1901.07291
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/W18-6453
https://www.aclweb.org/anthology/W18-6453
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://mt-archive.info/AMTA-2006-Snover.pdf
https://aclanthology.info/papers/P02-1040/p02-1040
https://aclanthology.info/papers/P02-1040/p02-1040
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
https://arxiv.org/pdf/1701.06548

BIBLIOGRAPHY

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Ken-
neth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji,
Nikolay Bogoychev, André F. T. Martins, and Alexandra Birch. Marian: Fast Neu-
ral Machine Translation in C++. In Proceedings of ACL, 2018b.

Haoyu Zhang, Jianjun Xu, and Ji Wang. Pretraining-Based Natural Language Genera-
tion for Text Summarization. In Proceedings of CoNLL, 2019.

Yen-Chun Chen, Zhe Gan, Yu Cheng, Jingzhou Liu, and Jingjing Liu. Distilling Knowl-
edge Learned in BERT for Text Generation. In Proceedings of ACL, 2020.

Jihyung Lee, WonKee Lee, Jaehun Shin, Baikjin Jung, Young-Kil Kim, and Jong-Hyeok
Lee. POSTECH-ETRI’s Submission to the WMT2020 APE Shared Task: Automatic
Post-Editing with Cross-lingual Language Model. In Proceedings of WMT, 2020.

Jiayi Wang, Ke Wang, Kai Fan, Yuqi Zhang, Jun Lu, Xin Ge, Yangbin Shi, and Yu Zhao.
Alibaba’s Submission for the WMT 2020 APE Shared Task: Improving Automatic
Post-Editing with Pre-trained Conditional Cross-Lingual BERT. In Proceedings of
WMT, 2020.

António Góis, Kyunghyun Cho, and André Martins. Learning Non-Monotonic Auto-
matic Post-Editing of Translations from Human Orderings. In Proceedings of EAMT,
2020.

Shamil Chollampatt, Raymond Hendy Susanto, Liling Tan, and Ewa Szymanska. Can
Automatic Post-Editing Improve NMT? In Proceedings of EMNLP, 2020.

Takashi Kodama, Ryuichiro Higashinaka, Koh Mitsuda, Ryo Masumura, Yushi Aono,
Ryuta Nakamura, Noritake Adachi, and Hidetoshi Kawabata. Generating Responses
That Reflect Meta Information in User-Generated Question Answer Pairs. In Proceed-
ings of LREC, 2020.

Xuancheng Huang, Jingfang Xu, Maosong Sun, and Yang Liu. Transfer Learning for
Sequence Generation: From Single-source to Multi-source. In Proceedings of ACL,
2021.

Gongbo Tang, Mathias Müller, Annette Rios, and Rico Sennrich. Why Self-attention?
A Targeted Evaluation of Neural Machine Translation Architectures. In Proceedings of
EMNLP, 2018.

Alessandro Raganato and Jörg Tiedemann. An Analysis of Encoder Representations in
Transformer-based Machine Translation. In Proceedings of BlackboxNLP, 2018.

David Mareček and Rudolf Rosa. Extracting Syntactic Trees from Transformer Encoder
Self-attentions. In Proceedings of BlackboxNLP, 2018.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT Rediscovers the Classical NLP
Pipeline. In Proceedings of ACL, 2019.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing
Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be
Pruned. In Proceedings of ACL, 2019.

113

https://www.aclweb.org/anthology/P18-4020
https://www.aclweb.org/anthology/P18-4020
http://arxiv.org/abs/1902.09243
http://arxiv.org/abs/1902.09243
http://arxiv.org/abs/1911.03829
http://arxiv.org/abs/1911.03829
https://aclanthology.org/2020.wmt-1.82.pdf
https://aclanthology.org/2020.wmt-1.82.pdf
https://aclanthology.org/2020.wmt-1.84.pdf
https://aclanthology.org/2020.wmt-1.84.pdf
http://arxiv.org/abs/2004.14120
http://arxiv.org/abs/2004.14120
http://arxiv.org/abs/2009.14395
http://arxiv.org/abs/2009.14395
https://aclanthology.org/2020.lrec-1.668/
https://aclanthology.org/2020.lrec-1.668/
http://arxiv.org/abs/2105.14809
http://arxiv.org/abs/2105.14809
https://arxiv.org/pdf/1808.08946.pdf
https://arxiv.org/pdf/1808.08946.pdf
https://www.aclweb.org/anthology/W18-5431
https://www.aclweb.org/anthology/W18-5431
https://www.aclweb.org/anthology/W18-5444
https://www.aclweb.org/anthology/W18-5444
https://arxiv.org/abs/1905.05950
https://arxiv.org/abs/1905.05950
https://www.aclweb.org/anthology/P19-1580
https://www.aclweb.org/anthology/P19-1580
https://www.aclweb.org/anthology/P19-1580

BIBLIOGRAPHY

Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, and Alexander Rush. Latent Align-
ment and Variational Attention. In Proceedings of NeurIPS, 2018.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating Long Sequences
with Sparse Transformers. preprint arXiv:1904.10509, 2019.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive
Attention Span in Transformers. In Proceedings of ACL, 2019.

Felix Wu, Angela Fan, Alexei Baevski, Yann N. Dauphin, and Michael Auli. Pay Less
Attention with Lightweight and Dynamic Convolutions. In Proceedings of ICLR, 2019.

Jian Li, Zhaopeng Tu, Baosong Yang, Michael R. Lyu, and Tong Zhang. Multi-Head
Attention with Disagreement Regularization. In Proceedings of EMNLP, 2018.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz,
and Edison Guo. On Differentiating Parameterized Argmin and Argmax Problems
with Application to Bi-level Optimization. preprint arXiv:1607.05447, 2016.

Brandon Amos and J. Zico Kolter. OptNet: Differentiable Optimization as a Layer in
Neural Networks. In Proceedings of ICML, 2017.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli, Niehues Jan, Stüker Sebastian, Su-
doh Katsuitho, Yoshino Koichiro, and Federmann Christian. Overview of the IWSLT
2017 Evaluation Campaign. In Proceedings of IWSLT, 2017.

Graham Neubig. The Kyoto free translation task. https://www.phontron.com/kftt,
2011.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Had-
dow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva,
Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Specia, Marco Turchi, Karin Verspoor,
and Marcos Zampieri. Findings of the 2016 Conference on Machine Translation. In
Proceedings of WMT, 2016.

Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Jo-
hannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu
Soricut, Lucia Specia, and Aleš Tamchyna. Findings of the 2014 Workshop on Statis-
tical Machine Translation. In Proceedings of WMT, 2014.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of
Rare Words with Subword Units. In Proceedings of ACL, 2016.

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan Titov. Context-aware Neural
Machine Translation Learns Anaphora Resolution. In Proceedings of ACL, 2018.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G. Dimakis. SMYRF:
Efficient Attention Using Asymmetric Clustering. In Proceedings of NeurIPS, 2020.

114

https://papers.nips.cc/paper/8179-latent-alignment-and-variational-attention
https://papers.nips.cc/paper/8179-latent-alignment-and-variational-attention
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1905.07799
https://arxiv.org/abs/1905.07799
https://arxiv.org/abs/1901.10430
https://arxiv.org/abs/1901.10430
https://aclweb.org/anthology/D18-1317
https://aclweb.org/anthology/D18-1317
https://arxiv.org/abs/1607.05447
https://arxiv.org/abs/1607.05447
https://proceedings.mlr.press/v70/amos17a.html
https://proceedings.mlr.press/v70/amos17a.html
https://workshop2017.iwslt.org/downloads/iwslt2017_proceeding_v2.pdf
https://workshop2017.iwslt.org/downloads/iwslt2017_proceeding_v2.pdf
https://www.phontron.com/kftt
https://aclanthology.org/W16-2301/
https://www.aclweb.org/anthology/W14-3302
https://www.aclweb.org/anthology/W14-3302
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://aclweb.org/anthology/P18-1117
https://aclweb.org/anthology/P18-1117
http://arxiv.org/abs/2010.05315
http://arxiv.org/abs/2010.05315

BIBLIOGRAPHY

Xiaoya Li, Yuxian Meng, Mingxin Zhou, Qinghong Han, Fei Wu, and Jiwei Li. SAC:
Accelerating and Structuring Self-Attention via Sparse Adaptive Connection. In Pro-
ceedings of NeurIPS, 2020.

William Merrill, Vivek Ramanujan, Yoav Goldberg, Roy Schwartz, and Noah Smith. Ef-
fects of Parameter Norm Growth During Transformer Training: Inductive Bias from
Gradient Descent. In Proceedings of EMNLP, 2021.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient Content-
Based Sparse Attention with Routing Transformers. TACL, 9:53–68, 2021.

Jyun-Yu Jiang, Chenyan Xiong, Chia-Jung Lee, and Wei Wang. Long Document Rank-
ing with Query-Directed Sparse Transformer. In Proceedings of EMNLP, 2020.

Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie Tang.
Blockwise Self-Attention for Long Document Understanding. In Proceedings of
EMNLP, 2020.

Sainbayar Sukhbaatar, Da Ju, Spencer Poff, Stephen Roller, Arthur Szlam, Jason Weston,
and Angela Fan. Not All Memories Are Created Equal: Learning to Forget by Expiring.
In Proceedings of ICML, 2021.

Weiqiu You, Simeng Sun, and Mohit Iyyer. Hard-Coded Gaussian Attention for Neural
Machine Translation. In Proceedings of ACL, 2020.

Madhura Pande, Aakriti Budhraja, Preksha Nema, Pratyush Kumar, and Mitesh M.
Khapra. The Heads Hypothesis: A Unifying Statistical Approach towards Understand-
ing Multi-Headed Attention in BERT. In Proceedings of AAAI, 2021.

Zhijiang Guo, Guoshun Nan, Wei Lu, and Shay B Cohen. Learning Latent Forests for
Medical Relation Extraction. In Proceedings of IJCAI, 2020.

Boxiang Yun, Yan Wang, Jieneng Chen, Huiyu Wang, Wei Shen, and Qingli Li. SpecTr:
Spectral Transformer for Hyperspectral Pathology Image Segmentation. preprint
arXiv:2103.03604, 2021.

Tianchu Ji, Shraddhan Jain, Michael Ferdman, Peter Milder, H. Andrew Schwartz, and
Niranjan Balasubramanian. On the Distribution, Sparsity, and Inference-time Quan-
tization of Attention Values in Transformers. In Proceedings of ACL-IJCNLP, 2021.

Hongfei Xu, Qiuhui Liu, Josef van Genabith, and Deyi Xiong. Learning Hard Retrieval
Decoder Attention for Transformers. In Proceedings of EMNLP, 2021.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J.
Reddi, and Sanjiv Kumar. O(n) Connections Are Expressive Enough: Universal Ap-
proximability of Sparse Transformers. In Proceedings of NeurIPS, 2020.

Biao Zhang, Ivan Titov, and Rico Sennrich. Sparse Attention with Linear Units. In
Proceedings of EMNLP, 2021a.

Biao Zhang, Ivan Titov, and Rico Sennrich. On Sparsifying Encoder Outputs in
Sequence-to-Sequence Models. In Proceedings of ACL-IJCNLP, 2021b.

115

http://arxiv.org/abs/2003.09833
http://arxiv.org/abs/2003.09833
http://arxiv.org/abs/2010.09697
http://arxiv.org/abs/2010.09697
http://arxiv.org/abs/2010.09697
https://aclanthology.org/2021.tacl-1.4
https://aclanthology.org/2021.tacl-1.4
http://arxiv.org/abs/2010.12683
http://arxiv.org/abs/2010.12683
http://arxiv.org/abs/1911.02972
https://proceedings.mlr.press/v139/sukhbaatar21a.html
http://arxiv.org/abs/2005.00742
http://arxiv.org/abs/2005.00742
http://arxiv.org/abs/2101.09115
http://arxiv.org/abs/2101.09115
https://www.ijcai.org/proceedings/2020/0505.pdf
https://www.ijcai.org/proceedings/2020/0505.pdf
http://arxiv.org/abs/2103.03604
http://arxiv.org/abs/2103.03604
https://aclanthology.org/2021.findings-acl.363
https://aclanthology.org/2021.findings-acl.363
https://aclanthology.org/2021.findings-emnlp.67
https://aclanthology.org/2021.findings-emnlp.67
http://arxiv.org/abs/2006.04862
http://arxiv.org/abs/2006.04862
http://arxiv.org/abs/2104.07012
https://aclanthology.org/2021.findings-acl.255
https://aclanthology.org/2021.findings-acl.255

BIBLIOGRAPHY

Alessandro Raganato, Yves Scherrer, and Jörg Tiedemann. Fixed Encoder Self-Attention
Patterns in Transformer-Based Machine Translation. In Proceedings of EMNLP, 2020.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo
Gradient Estimation in Machine Learning. preprint arXiv:1906.10652, 2019.

Kris Cao. Learning Meaning Representations for Text Generation with Deep Generative Models.
PhD thesis, University of Cambridge, 2019.

Andriy Mnih and Danilo J. Rezende. Variational Inference for Monte Carlo Objectives.
In Proceedings of ICML, 2016.

Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. Importance Weighted Autoen-
coders. In Proceedings of ICLR, 2016.

Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance Reduction Tech-
niques for Gradient Estimates in Reinforcement Learning. JMLR, 5:1471–1530, 2004.

Guy Lorberbom, Andreea Gane, Tommi Jaakkola, and Tamir Hazan. Direct Optimiza-
tion through argmax for Discrete Variational Auto-Encoder. In Proceedings of NeurIPS,
2019.

Marin Vlastelica, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differ-
entiation of Blackbox Combinatorial Solvers. In Proceedings of ICLR, 2020.

Mingzhang Yin and Mingyuan Zhou. ARM: Augment-REINFORCE-Merge Gradient
for Stochastic Binary Networks. In Proceedings of ICLR, 2019.

Art B. Owen. Monte Carlo Theory, Methods and Examples. Copyright Art Owen, 2013.

Wouter Kool, Herke van Hoof, and Max Welling. Estimating Gradients for Discrete
Random Variables by Sampling without Replacement. In Proceedings of ICLR, 2020.

Anastasios Kyrillidis, Stephen Becker, Volkan Cevher, and Christoph Koch. Sparse Pro-
jections onto the Simplex. In Proceedings of ICML, 2013.

Venkata Krishna Pillutla, Vincent Roulet, Sham M. Kakade, and Zaid Harchaoui. A
Smoother Way to Train Structured Prediction Models. In Proceedings of NeurIPS, 2018.

Mathieu Blondel, André F.T. Martins, and Vlad Niculae. Learning with Fenchel-Young
losses. JMLR, 21(35):1–69, 2020.

Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-agent Coopera-
tion and the Emergence of (Natural) Language. In Proceedings of ICLR, 2017.

Eugene Kharitonov, Rahma Chaabouni, Diane Bouchacourt, and Marco Baroni. EGG: a
Toolkit for Research on Emergence of LanGuage in Games. In Proceedings of EMNLP,
2019.

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An
Introduction to Variational Methods for Graphical Models. Machine Learning, 37(2):
183–233, 1999.

116

https://arxiv.org/abs/2002.10260
https://arxiv.org/abs/2002.10260
https://arxiv.org/abs/1906.10652
https://arxiv.org/abs/1906.10652
https://www.repository.cam.ac.uk/bitstream/handle/1810/305297/phd_thesis_template_master%20(29).pdf
https://arxiv.org/abs/1602.06725
https://arxiv.org/abs/1509.00519
https://arxiv.org/abs/1509.00519
https://www.jmlr.org/papers/v5/greensmith04a.html
https://www.jmlr.org/papers/v5/greensmith04a.html
https://arxiv.org/abs/1806.02867
https://arxiv.org/abs/1806.02867
https://openreview.net/forum?id=BkevoJSYPB
https://openreview.net/forum?id=BkevoJSYPB
https://openreview.net/forum?id=S1lg0jAcYm
https://openreview.net/forum?id=S1lg0jAcYm
https://statweb.stanford.edu/~owen/mc/
https://openreview.net/forum?id=rklEj2EFvB
https://openreview.net/forum?id=rklEj2EFvB
https://proceedings.mlr.press/v28/kyrillidis13.pdf
https://proceedings.mlr.press/v28/kyrillidis13.pdf
https://papers.nips.cc/paper/7726-a-smoother-way-to-train-structured-prediction-models.pdf
https://papers.nips.cc/paper/7726-a-smoother-way-to-train-structured-prediction-models.pdf
https://jmlr.org/papers/v21/19-021.html
https://jmlr.org/papers/v21/19-021.html
https://arxiv.org/abs/1612.07182
https://arxiv.org/abs/1612.07182
https://arxiv.org/abs/1907.00852
https://arxiv.org/abs/1907.00852
https://link.springer.com/article/10.1023/A:1007665907178
https://link.springer.com/article/10.1023/A:1007665907178

BIBLIOGRAPHY

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based Learn-
ing Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel.
Self-critical Sequence Training for Image Captioning. In Proceedings of CVPR, 2017.

Andriy Mnih and Karol Gregor. Neural Variational Inference and Learning in Belief
Networks. In Proceedings of ICML, 2014.

Simon Kirby. Natural Language from Artificial Life. Artificial life, 8(2):185–215, 2002.

Serhii Havrylov and Ivan Titov. Emergence of Language with Multi-agent Games:
Learning to Communicate with Sequences of Symbols. In Proceedings of NeurIPS, 2017.

Emilio Jorge, Mikael Kågebäck, Fredrik D. Johansson, and Emil Gustavsson. Learn-
ing to Play Guess Who? and Inventing a Grounded Language as a Consequence. In
Proceedings of NeurIPS Workshop on Deep Reinforcement Learning, 2016.

Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson.
Learning to Communicate with Deep Multi-agent Reinforcement Learning. In Pro-
ceedings of NeurIPS, 2016.

Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning Multiagent Communi-
cation with Backpropagation. In Proceedings of NeurIPS, 2016.

Volodymyr Mnih, Adria Puigdomenech Badia, Lehdi Mirza, Alex Graves, Tim Harley,
Timothy P. Lillicrap, David Silver, and Koray Kavukcuoglu. Asynchronous Methods
for Deep Reinforcement Learning. In Proceedings of ICML, 2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset
for Benchmarking Machine Learning Algorithms. preprint arXiv:1708.07747, 2017.

Alexander A. Alemi, Ben Poole, Ian Fischer, Joshua V. Dillon, Rif A. Saurous, and Kevin
Murphy. Fixing a Broken ELBO. In Proceedings of ICML, 2018.

Phil Chen, Masha Itkina, Ransalu Senanayake, and Mykel J. Kochenderfer. Evidential
Softmax for Sparse Multimodal Distributions in Deep Generative Models. In Proceed-
ings of NeurIPS, 2021.

Masha Itkina, Boris Ivanovic, Ransalu Senanayake, Mykel J. Kochenderfer, and Marco
Pavone. Evidential Sparsification of Multimodal Latent Spaces in Conditional Varia-
tional Autoencoders. In Proceedings of NeurIPS, 2020.

André F. T. Martins, António Farinhas, Marcos Treviso, Vlad Niculae, Pedro M. Q.
Aguiar, and Mário A. T. Figueiredo. Sparse and Continuous Attention Mechanisms.
In Proceedings of NeurIPS, 2020.

Bailin Wang, Mirella Lapata, and Ivan Titov. Learning from Executions for Semantic
Parsing. In Proceedings of NAACL, 2021.

117

https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791
https://openaccess.thecvf.com/content_cvpr_2017/papers/Rennie_Self-Critical_Sequence_Training_CVPR_2017_paper.pdf
https://arxiv.org/abs/1402.0030
https://arxiv.org/abs/1402.0030
https://web.archive.org/web/20170811043608id_/http://www2.denizyuret.com/ref/kirby/kirby02.pdf
https://arxiv.org/abs/1705.11192
https://arxiv.org/abs/1705.11192
https://arxiv.org/abs/1611.03218
https://arxiv.org/abs/1611.03218
https://papers.nips.cc/paper/6042-learning-to-communicate-with-deep-multi-agent-reinforcement-learning.pdf
https://papers.nips.cc/paper/6398-learning-multiagent-communication-with-backpropagation.pdf
https://papers.nips.cc/paper/6398-learning-multiagent-communication-with-backpropagation.pdf
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/pdf/1708.07747.pdf
https://arxiv.org/pdf/1708.07747.pdf
https://arxiv.org/abs/1711.00464
https://proceedings.neurips.cc/paper/2021/hash/60243f9b1ac2dba11ff8131c8f4431e0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/60243f9b1ac2dba11ff8131c8f4431e0-Abstract.html
https://arxiv.org/abs/2010.09164
https://arxiv.org/abs/2010.09164
http://arxiv.org/abs/2006.07214
http://arxiv.org/abs/2104.05819
http://arxiv.org/abs/2104.05819

BIBLIOGRAPHY

Mina Lee, Tatsunori B. Hashimoto, and Percy Liang. Learning Autocomplete Systems
as a Communication Game. In Proceedings of the NeurIPS Workshop on Emergent Com-
munication, 2019.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham
Neubig. Pre-Train, Prompt, and Predict: A Systematic Survey of Prompting Methods
in Natural Language Processing. preprint arXiv:2107.13586, 2021.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren, and Percy Liang. Generating Sen-
tences by Editing Prototypes. TACL, 6:437–450, 2018.

Junxian He, Taylor Berg-Kirkpatrick, and Graham Neubig. Learning Sparse Prototypes
for Text Generation. In Proceedings of NeurIPS, 2020.

Frank H Clarke. Optimization and Nonsmooth Analysis. SIAM, 1990.

118

https://arxiv.org/abs/1911.06964
https://arxiv.org/abs/1911.06964
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
https://arxiv.org/abs/1709.08878
https://arxiv.org/abs/1709.08878
https://arxiv.org/abs/2006.16336
https://arxiv.org/abs/2006.16336
https://epubs.siam.org/doi/book/10.1137/1.9781611971309

A
Proof of Proposition 4.3

A-1

A. Proof of Proposition 4.3

A-2

Jacobian of 𝜶-entmax w.r.t. the shape parameter 𝜶

Recall that the entmax transformation is defined as:

𝛼-entmax(z) B argmax
p∈△d−1

p⊤z + Ht𝛼 (p) , (A.1)

where 𝛼 ≥ 1 and Ht𝛼 is the Tsallis entropy,

Ht𝛼 (p)B

1

𝛼 (𝛼−1)
∑
j

(
p j − p𝛼j

)
, 𝛼 ≠ 1,

ℍ(p) , 𝛼 = 1,

and ℍ(p) := −∑
j p j log p j is the Shannon entropy.

In this section, we derive the Jacobian of entmax with respect to the scalar parameter

𝛼.

General case of 𝜶 > 1

From the KKT conditions associated with the optimization problem in Eq. A.1, we

have that the solution p★ has the following form, coordinate-wise:

p★i = [(𝛼 − 1) (zi − 𝜏★)]1/(𝛼−1)
+ , (A.2)

where 𝜏★ is a scalar Lagrange multiplier that ensures that p★ normalizes to 1, i.e., it is

defined implicitly by the condition:

∑︁
i

[(𝛼 − 1) (zi − 𝜏★)]1/(𝛼−1)
+ = 1. (A.3)

For general values of 𝛼, Eq. A.3 lacks a closed form solution. This makes the computation

of the Jacobian
𝜕 𝛼-entmax(z)

𝜕𝛼

A-3

A. Proof of Proposition 4.3

non-trivial. Fortunately, we can use the technique of implicit differentiation to obtain

this Jacobian.

The Jacobian exists almost everywhere, and the expressions we derive expressions

yield a generalized Jacobian [Clarke, 1990] at any non-differentiable points that may

occur for certain (𝛼, z) pairs. We begin by noting that
𝜕p★i
𝜕𝛼

= 0 if p★i = 0, because increasing

𝛼 keeps sparse coordinates sparse.1 Therefore we need to worry only about coordinates

that are in the support of p★. We will assume hereafter that the i th coordinate of p★ is

non-zero. We have:

𝜕p★i
𝜕𝛼

=
𝜕

𝜕𝛼
[(𝛼 − 1) (zi − 𝜏★)] 1

𝛼−1

=
𝜕

𝜕𝛼
exp

[
1

𝛼 − 1
log[(𝛼 − 1) (zi − 𝜏★)]

]
= p★i

𝜕

𝜕𝛼

[
1

𝛼 − 1
log[(𝛼 − 1) (zi − 𝜏★)]

]
=

p★i
(𝛼 − 1)2

[
𝜕
𝜕𝛼
[(𝛼 − 1) (zi − 𝜏★)]

zi − 𝜏★
− log[(𝛼 − 1) (zi − 𝜏★)]

]
=

p★i
(𝛼 − 1)2

[
zi − 𝜏★ − (𝛼 − 1) 𝜕𝜏★

𝜕𝛼

zi − 𝜏★
− log[(𝛼 − 1) (zi − 𝜏★)]

]
=

p★i
(𝛼 − 1)2

[
1 − 𝛼 − 1

zi − 𝜏★
𝜕𝜏★

𝜕𝛼
− log[(𝛼 − 1) (zi − 𝜏★)]

]
. (A.4)

We can see that this Jacobian depends on 𝜕𝜏★

𝜕𝛼
, which we now compute using implicit

differentiation.

Let S = {i : p★i > 0}). By differentiating both sides of Eq. A.3, re-using some of the

1This follows from the margin property of Ht𝛼 [Blondel et al., 2019].

A-4

steps in Eq. A.4, and recalling Eq. A.2, we get

0 =
∑︁
i∈S

𝜕

𝜕𝛼
[(𝛼 − 1) (zi − 𝜏★)]1/(𝛼−1)

=
∑︁
i∈S

p★i
(𝛼 − 1)2

[
1 − 𝛼 − 1

zi − 𝜏★
𝜕𝜏★

𝜕𝛼
− log[(𝛼 − 1) (zi − 𝜏★)]

]
=

1
(𝛼 − 1)2

− 𝜕𝜏★

𝜕𝛼

∑︁
i∈S

p★i
(𝛼 − 1) (zi − 𝜏★) −

∑︁
i∈S

p★i
(𝛼 − 1)2

log[(𝛼 − 1) (zi − 𝜏★)]

=
1

(𝛼 − 1)2
− 𝜕𝜏★

𝜕𝛼

∑︁
i

(p★i)
2−𝛼 −

∑︁
i

p★i
𝛼 − 1

log p★i

=
1

(𝛼 − 1)2
− 𝜕𝜏★

𝜕𝛼

∑︁
i

(p★i)
2−𝛼 + ℍ(p∗)

𝛼 − 1
, (A.5)

from which we obtain:

𝜕𝜏★

𝜕𝛼
=

1
(𝛼−1)2 +

ℍ(p★)
𝛼−1∑

i (p★i)2−𝛼
. (A.6)

Finally, plugging Eq. A.6 into Eq. A.4, we get:

𝜕p★i
𝜕𝛼

=
p★i

(𝛼 − 1)2

[
1 − 1
(p★i)𝛼−1

𝜕𝜏★

𝜕𝛼
− (𝛼 − 1) log p★i

]
=

p★i
(𝛼 − 1)2

1 −
1

(p★i)𝛼−1

1
(𝛼−1)2 +

ℍ(p★)
𝛼−1∑

i (p★i)2−𝛼
− (𝛼 − 1) log p★i

=

p★i − p̃i (𝛼)
(𝛼 − 1)2

−
p★i log p

★
i + p̃i (𝛼)ℍ(p

★)
𝛼 − 1

, (A.7)

where we denote by

p̃i (𝛼) =
(p★i)

2−𝛼∑
j (p★j)2−𝛼

.

The distribution p̃(𝛼) can be interpreted as a “skewed” distribution obtained from p★,

which appears in the Jacobian of 𝛼-entmax(z) w.r.t. z as well Peters et al. [2019].

A-5

A. Proof of Proposition 4.3

Solving the indetermination for 𝜶 = 1

We can write Eq. A.7 as

𝜕p★i
𝜕𝛼

=
p★i − p̃i (𝛼) − (𝛼 − 1) (p★i log p

★
i + p̃i (𝛼)ℍ(p

★))
(𝛼 − 1)2

. (A.8)

When 𝛼 → 1+, we have p̃(𝛼) → p★, which leads to a 0
0 indetermination.

To solve this indetermination, we will need to apply L’Hôpital’s rule twice. Let us first

compute the derivative of p̃i (𝛼) with respect to 𝛼. We have

𝜕

𝜕𝛼
(p★i)

2−𝛼 = −(p★i)
2−𝛼 log p★i ,

therefore

𝜕

𝜕𝛼
p̃i (𝛼) =

𝜕

𝜕𝛼

(p★i)
2−𝛼∑

j (p★j)2−𝛼

=
−(p★i)

2−𝛼 log p★i
∑
j (p★j)

2−𝛼 + (p★i)
2−𝛼 ∑

j (p★j)
2−𝛼 log p★j(∑

j (p★j)2−𝛼
)2

= −p̃i (𝛼) log p★i + p̃i (𝛼)
∑︁
j

p̃ j (𝛼) log p★j . (A.9)

Differentiating the numerator and denominator in Eq. A.8, we get:

𝜕p★i
𝜕𝛼

= lim
𝛼→1+

(1 + (𝛼 − 1)ℍ(p★)) p̃i (𝛼) (log p★i −
∑
j p̃ j (𝛼) log p★j) − p

★
i log p

★
i − p̃i (𝛼)ℍ(p

★)
2(𝛼 − 1)

= A + B, (A.10)

with

A = lim
𝛼→1+

ℍ(p★) p̃i (𝛼) (log p★i −
∑
j p̃ j (𝛼) log p★j)ℍ(p

★)
2

=
ℍ(p★)p★i log p

★
i + p

★
i (ℍ(p

★))2

2
, (A.11)

A-6

and

B = lim
𝛼→1+

p̃i (𝛼) (log p★i −
∑
j p̃ j (𝛼) log p★j) − p

★
i log p

★
i − p̃i (𝛼)ℍ(p

★)
2(𝛼 − 1) . (A.12)

When 𝛼 → 1+, B becomes again a 0
0 indetermination, which we can solve by applying

again L’Hôpital’s rule. Differentiating the numerator and denominator in Eq. A.12:

B =
1
2

lim
𝛼→1+

p̃i (𝛼) log p★i ©«
∑︁
j

p̃ j (𝛼) log p★j − log p
★
i
ª®¬

−p̃i (𝛼)
©«
∑︁
j

p̃ j (𝛼) log p★j − log p
★
i
ª®¬ ©«

∑︁
j

p̃ j (𝛼) log p★j + ℍ(p
★)ª®¬

−p̃i (𝛼)
∑︁
j

p̃ j (𝛼) log p★j

(∑︁
k

p̃k (𝛼) log p★k − log p
★
j

)
=
−p★i log p

★
i (ℍ(p

★) + log p★i) + p
★
i
∑
j p★j log p

★
j (ℍ(p

★) + log p★j)
2

=
−ℍ(p★)p★i log p

★
i − p

★
i (ℍ(p

★))2 − p★i log
2 p★i + p

★
i
∑
j p★j log

2 p★j
2

. (A.13)

Finally, summing Eq. A.11 and Eq. A.13, we get

𝜕p★i
𝜕𝛼

����
𝛼=1

=
−p★i log

2 p★i + p
★
i
∑
j p★j log

2 p★j
2

. (A.14)

Summary

To sum up, we have the following expression for the Jacobian of 𝛼-entmax with re-

spect to 𝛼:

𝜕p★i
𝜕𝛼

=

p★i −p̃i (𝛼)
(𝛼−1)2 −

p★i log p
★
i +p̃i (𝛼)ℍ(p

★)
𝛼−1 , for 𝛼 > 1

−p★i log
2 p★i +p

★
i
∑
j p★j log

2 p★j
2 , for 𝛼 = 1.

A-7

A. Proof of Proposition 4.3

A-8

B
Infrastructure

B-1

B. Infrastructure

B-2

The infrastructure used during the course of this project consisted of 4 machines with

the specifications shown in Table B.1. The machines were used interchangeably, and

all experiments were executed in a single GPU. Despite having machines with different

specifications, we did not observe large differences in the execution time of our models

across different machines.

GPU CPU

1. 4 × Titan Xp - 12GB 16 × AMD Ryzen 1950X @ 3.40GHz - 128GB
2. 4 × GTX 1080 Ti - 12GB 8 × Intel i7-9800X @ 3.80GHz - 128GB
3. 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB
4. 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB

Table B.1: Computing infrastructure.

B-3

B. Infrastructure

B-4

	Title
	Title
	Abstract
	Resumo
	Acknowledgments
	Acknowledgments
	Index
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Contributions and Thesis Statement
	1.2 Publications
	1.3 Roadmap

	2 Background
	2.1 Machine Learning
	2.1.1 Linear and Deep Models

	2.2 Neural Networks and Natural Language
	2.2.1 Sequence-to-Sequence Models
	2.2.2 Transformer
	2.2.3 Large Pre-trained Language Models

	2.3 Sparsity and the Simplex
	2.3.1 Sparsemax
	2.3.2 Entmax
	2.3.3 SparseMAP

	2.4 Latent Variable Models
	2.4.1 Discrete Latent Variables
	2.4.2 Structured Latent Variables

	3 A Simple and Effective Approach to APE with Transfer Learning
	3.1 Motivation
	3.2 Previous Work
	3.3 Automatic Post-Editing with BERT
	3.3.1 BERT as a Cross-Lingual Encoder
	3.3.2 BERT as a Decoder

	3.4 Experiments
	3.5 Subsequent Work
	3.6 Final Remarks and Chapter Summary

	4 Adaptively Sparse Transformers
	4.1 Motivation
	4.2 Previous Work
	4.3 Adaptively Sparse Transformers
	4.4 Experiments
	4.5 Analysis
	4.5.1 High-Level Statistics
	4.5.2 Identifying Head Specializations

	4.6 Subsequent Work
	4.7 Final Remarks and Chapter Summary

	5 Efficient Marginalization of Discrete and Structured Latent Variables
	5.1 Motivation
	5.2 Previous Work
	5.3 Efficient Marginalization via Sparsity
	5.4 Structured Latent Variables
	5.4.1 Top-k Sparsemax
	5.4.2 SparseMAP

	5.5 Experimental Analysis
	5.5.1 Semi-Supervised Variational Auto-Encoder
	5.5.2 Emergent Communication Game
	5.5.3 Bit-Vector Variational Auto-Encoder

	5.6 Subsequent Work
	5.7 Final Remarks and Chapter Summary

	6 Conclusions
	6.1 Summary of Contributions
	6.2 Open Problems and Limitations
	6.3 Future Directions
	6.4 Broader Impact

	Bibliography
	Appendix A Proof of Proposition 4.3
	Appendix B Infrastructure

